
CLD

CL
D

CLD

CL
D

CLD

CLD

CLDCLD

CLDCLD CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CL
DCLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLDCLD

CLD

CLDCLD

CLD
CLD
CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CLD

CLD CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD CLD
CLD

CLD

CLD

CL
D

CLD
CLD

CL
D

CLDCLD CLD

CLD

CLD

CL
D

CLD

CLDCLD

CLD

CL
D

CL
D

CLD
CLDCLD

CLD

CLDCLD

CL
D

CL
D

CLDCLD
CLD

CLD

CL
D

CLD CLD

CL
D

CL
D

CLD CLD

CLD

CLD
CLD

CL
D

CLD
CLD
CLD

CLD

CLD
CLD
CLD

CL
D

CLD

CLD
CLD
CLD
CLD

CL
D

CLD

CLD CLD

CLD

CL
D

CLD CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD
CLD CLD

CLD

CL
DCLD CLD

CLD CLD

CL
D

CLD

CL
D

CLD

CLDCLD
CLD

CL
D

CLD
CLD

CL
D

CLDCLD

CLD

CL
D

CL
D

CLD CLD
CLD
CLD

CLD

CLD
CLD

CLD

CLD

CLD

CLD

CLD CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CL
D

CL
DCLD

CLD

CL
D

CLD

CL
D

CLD

CLD
CLD

CLD

CLDCLD

CLD CLD

CLD

CLD

CL
D

CLDCLD

CLDCLD CLDCLD

CL
D

CL
D

CL
D

CLD

CLDCLDCLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD
CLD
CLD

CLD

CL
D

CL
D

CL
D

CLD
CLD

CLD

CLD

CLD

CLD

CLD
CLD

CL
D

CL
D

CLDCLD

CLD
CL

D

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD CLD
CLD

CLD

CL
D

CLD CLD

CLD

CLD

CLD

CL
D

CLD CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD CLD

CLDCLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD
CLD

CLD
CLDCLD

CLD

CL
D

CLD

CLD

CLD

CLDCLD
CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD
CLD

CLD

CLD

CLD

CLD

CLD

CL
DCLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD
CL

D

CLD

CL
D

CLD

CL
D

CLD

CL
DCLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CL
D

CLD
CLD
CLD

CL
D

CL
D

CLDCLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD CLD

CLD

CL
D

CLD

CL
DCLD

CL
D

CLD

CLD

CLDCLD CLD

CLDCLD

CLD
CLD
CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD CLD

CL
D

CL
D

CL
D

CLD CLD
CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLDCLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLDCLD CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLDCLD

CL
D

CL
D

CL
D

CLD
CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLDCLD

CLD
CLD CLD

CL
D

CL
D

CL
DCLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD
CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLDCLD

CLDCLD
CLD

CL
D

CLD

CLD

CL
D

CL
D

CLDCLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CL
D

CLDCLD

CLD
CLD

CLD
CLD
CLD

CLD

CLDCLDCLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CLDCLD

CL
D

CLDCLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CLDCLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CL
DCLD

CLDCLD

CLDCLD

CLD

CL
D

CLD

CLD CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CLDCLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD CLD

CLD

CL
D

CLDCLD

CL
D

CLD

CL
D

CL
D

CLDCLDCLDCLD CLD
CLD

CL
D

CLD

CL
D

CLD
CLD
CLD

CL
D

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD
CLD

CLD

CL
D

CLD

CLDCLD

CLD

CLD

CLD
CLD

CLD

CL
DCLD

CLD

CLDCLD CLD
CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD
CLD

CLD

CL
D

CL
D

CLD

CLD CLD

CLDCLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CLD CLD CLD

CL
D

CLD
CLD

CLD

CLD

CLD
CLD

CLDCLD

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLDCLD

CLD
CLD

CLD

CLDCLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLDCLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD CLD

CLD

CLD CLD

CLD

CLD

CLD

CL
D

CLD

CLDCLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CLDCLD
CLD
CLD

CL
D

CLD

CLD

CL
D

CLD

CLDCLDCLD

CL
D

CL
D

CLD

CL
D

CLD
CL

D

CL
D

CLDCLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD
CLD
CLD

CL
DCLD CLD

CLDCLD CLD

CLD

CLDCLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD
CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CLD

CLD

CL
D

CLD
CL

D
CL

D

CLD
CLD

CLD
CLD

CLD

CLD
CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLDCLD
CLD
CLD

CL
D

CLD
CLD

CLD

CLD

CL
D

CLD

CL
D

CLDCLD CLD

CL
D

CLD
CLD

CLD

CLD

CL
D

CLDCLD CLD

CLD

CLDCLD

CLDCLDCLD

CLD
CLD
CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLDCLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CLD
CLD
CLD

CLD

CLD

CLD

CLDCLD

CLD
CLD

CLD

CLDCLD

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD CLD

CLD CLD

CLDCLD

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
DCLD

CL
D

CL
D

CLD

CLDCLD

CLDCLD

CLD
CLD

CLD
CLDCLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD CLD
CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD
CLD
CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLDCLDCLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD
CLDCLD

CLD

CL
D

CL
D

CLD
CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD
CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD
CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD
CLD
CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD
CLD

CLDCLD CLD

CL
D

CLD

CLD

CLDCLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CLDCLD

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CLDCLD

CLD

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CLD
CL

D
CL

D
CL

D

CLD
CLDCLD
CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD
CLD

CLD CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD
CLD

CL
D

CLD

CL
D

CL
D

CLD
CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD CLD

CL
D

CLD

CL
D

CLD

CLDCLD
CLD

CL
D

CL
D

CLD CLD

CLD CLD

CL
D

CLD

CL
D

CLD
CLDCLD

CL
D

CL
D

CLD
CLDCLD

CLD
CLD

CLD

CLDCLD

CL
D

CLD

CL
D

CLD

CLDCLD

CLDCLD

CLD
CLD
CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CLDCLD

CLD

CL
D

CLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CLD
CLD

CLDCLD

CL
D

CLD

CLD

CLD
CLD
CLD

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD
CL

D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
DCLD CLD

CLD

CL
D

CL
D

CLD
CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CLD
CLD

CLDCLD

CLD

CLD

CL
D

CLDCLD

CLD
CL

D

CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD CLD

CLD

CL
D

CLD

CLD

CLDCLD

CLD
CLD
CLDCLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLDCLD

CL
D

CL
D

CLDCLD

CLD

CL
D

CLDCLD

CLD

CL
D

CLD

CLD

CLD

CLD
CL

D
CL

D

CLD

CL
D

CLD

CLD CLD

CLDCLD
CLDCLD

CL
D

CLD

CL
D

CLD CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLD

CL
DCLDCLD

CL
D

CLD

CLD
CLD

CLD

CLD
CLD
CLD

CL
D

CLD
CL

D
CLD

CL
D

CLD

CLD

CLD
CLD
CLD

CL
D

CLD

CLD CLD

CL
D

CLD
CLDCLD

CL
D

CLD
CLD
CLD

CLD
CLD

CLD

CL
D

CLD CLD

CLD

CLD
CLD

CLD CLD

CLD

CL
D

CL
D

CLD

CLD
CLDCLD

CLD

CLD

CLDCLDCLD
CLD
CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD
CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD
CLD
CLD

CL
D

CLD
CLD

CL
DCLD CLD

CL
DCLD

CLD

CL
D

CL
D

CL
D

CLD
CLDCLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD
CLD

CLD CLD

CL
D

CLD

CLD
CLD

CLD
CLD

CL
D

CL
D

CL
D

CL
D

CLDCLD

CLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLDCLD

CLD

CL
D

CL
D

CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLDCLD

CLD

CLDCLD

CL
D

CL
D

CLD

CL
D

CLDCLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLDCLD

CL
D

CL
D

CL
D

CLD

CL
DCLD

CLD
CLD
CLD

CLD
CLD

CLD

CLD

CL
D

CLD
CLD

CLDCLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLDCLD

CLDCLD
CLD CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD CLD

CLD

CL
DCLD CLDCLD

CLD

CLD
CLD

CLD

CLD

CLDCLD

CL
D

CLDCLD

CLD

CLD

CLD

CL
D

CLDCLD

CL
D

CL
D

CLD

CLD

CLD

CLD CLD
CLD

CLD CLD
CLD

CLD

CL
DCLD

CL
D

CLD

CLD

CLD
CLD
CLD

CL
D

CLD

CLD

CLD

CLD CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLDCLD

CL
D

CLDCLD

CLD

CL
D

CL
D

CLD
CLD

CLD

CL
D

CLD

CLD
CLD
CLD

CL
D

CLD

CLD

CL
D

CLD

CLD CLD
CLDCLD

CL
D

CL
D

CLDCLD

CLD

CLD

CL
D

CL
D

CLD
CL

D
CL

D
CL

D
CL

D

CLD

CL
D

CL
D

CLD

CL
D

CLDCLD

CL
D

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CLDCLD

CL
D

CL
D

CLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CLD CLD

CLD CLD

CL
DCLD CLD

CLD

CLD

CLD

CLD
CLD
CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD
CLD

CLD
CLD

CLDCLD

CLD

CL
D

CLD

CL
D

CLD

CLDCLD

CL
D

CL
D

CLD CLD

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CLDCLD CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CL
D

CLDCLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CL
D

CLD

CLD

CL
D

CLDCLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CLDCLD

CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD
CLD

CLDCLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CL
D

CL
D

CLD

CLD
CLDCLD

CL
D

CL
D

CLD

CL
D

CL
DCLD

CLD

CL
D

CL
D

CL
D

CLDCLD
CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLDCLD

CLD

CL
D

CLD

CLD

CL
D

CLDCLD
CLD

CLD

CLD
CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLDCLD
CLD

CL
D

CLDCLD CLD

CLDCLD

CLD CLDCLD

CLD

CLDCLD

CLD

CLD

CLD
CLD
CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CLD
CLD

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD
CLD

CL
D

CLD

CLD
CLD
CLD
CLD
CLD

CLD

CLD
CLDCLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD
CLD

CLD

CLDCLD

CL
D

CLD

CLDCLD

CLD

CLD

CLDCLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLDCLD

CLD

CL
D

CLD

CL
D

CLD

CLD
CLDCLDCLD

CL
D

CL
D

CL
D

CLD

CL
D

CLDCLD

CLD

CL
D

CLD

CL
D

CLD
CLD
CLD
CLD

CL
D

CL
D

CLD

CLD
CL

D

CLD

CLD

CLDCLD

CLDCLD

CLD

CLDCLD

CLD

CLD

CL
D

CLD CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CLD

CL
D

CLD
CLDCLD

CLD

CL
D

CLD CLD

CLD

CL
D

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLDCLD

CLD

CL
D

CLDCLD

CLDCLD

CL
D

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD

CL
D

CLD

CLDCLD CLD CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD

CLDCLD CLD CLDCLD

CLD

CLDCLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD
CLD
CLD

CLD
CLD

CLD

CLD
CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLDCLD

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLDCLD

CLD
CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
DCLD

CLD

CL
D

CLD

CL
D

CLD

CLD
CLD
CLD

CL
D

CL
D

CL
D

CLD
CL

D

CLD

CL
D

CLD
CLD

CL
D

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CLDCLD

CLDCLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD CLD

CL
D

CLDCLD

CL
D

CL
D

CLD

CLD

CLD

CLDCLD
CLD

CL
DCLD

CL
D

CLD

CLDCLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD
CLDCLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLDCLD

CL
D

CLD

CLD

CL
D

CL
DCLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLDCLD CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD
CLD

CLD

CLDCLD CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD
CLD

CL
D

CLD

CLDCLD

CL
D

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLDCLD

CL
D

CLD

CLD

CLD
CLDCLD

CLD
CLD

CL
D

CLD
CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CLD
CLD CLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CLD

CLDCLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD
CLD

CLD

CLDCLD

CLD

CLD

CLD

CLD

CL
D

CLD
CLD

CL
D

CLDCLD

CLD

CLDCLD
CL

D
CLD

CLD

CL
D

CLD

CL
D

CLDCLD

CLD

CL
D

CL
D

CLD

CL
D

CLDCLD
CLD

CL
D

CLD

CL
D

CLD

CLDCLD CLD
CLDCLD

CLD

CLDCLD

CL
D

CL
D

CLD

CLD
CLD

CLD

CLD

CLD

CL
D

CLD
CLDCLD

CLD

CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD CLD

CLD

CLD
CLD

CLD
CL

D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLDCLD

CL
D

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLDCLD

CL
D

CLD

CLD

CLD

CL
D

CLDCLD

CL
D

CLD

CLD

CLD
CLDCLD

CL
D

CLD

CLD
CLDCLD

CL
D

CLD
CLD
CLD

CL
D

CLD
CLDCLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
DCLD

CLD

CLD

CL
D

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLDCLD CLD
CLDCLD

CL
D

CLD

CLD

CLD

CLD CLD
CLD

CLD

CLD

CL
D

CLD CLD

CLD

CLD
CLD

CLD CLD

CL
D

CLD
CLDCLD

CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLDCLD

CLD
CLDCLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CLDCLD

CLD

CL
D

CLDCLD
CLD

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD
CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD
CLDCLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CLD

CL
D

CLDCLD

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CLDCLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLDCLD CLD

CLD

CLD
CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLDCLD

CLD

CLD

CL
D

CLD

CL
D

ConTEXt Lua
Documents

Hans Hagen

preliminary, uncorrected version – November 26, 2010

1

preliminary, uncorrected version – November 26, 2010

Contents

Introduction 5

1 A bit of Lua 7
1.1 The language 7
1.2 Data types 7
1.3 TEX's data types 10
1.4 Control structures 10
1.5 Conditions 12
1.6 Namespaces 12
1.7 Comment 14

2 Getting started 15
2.1 Some basics 15
2.2 The main command 16
2.3 Spaces and Lines 17
2.4 Direct output 18
2.5 Catcodes 20

3 More on functions 23
3.1 Why we need them 23
3.2 How we can avoid them 24
3.3 Trial typesetting 25

4 A few Details 27
4.1 Variables 27
4.2 Modes 27
4.3 Token lists 28
4.4 Node lists 29

5 Some more examples 31
5.1 Appetizer 31
5.2 A few examples 32
5.3 Styles 35
5.4 A complete example 37

6 Graphics 41
6.1 The regular interface 41
6.2 The Lua interface 44

7 Verbatim 45
7.1 Introduction 45
7.2 Special treatment 45
7.3 Multiple lines 46
7.4 Pretty printing 46

2

preliminary, uncorrected version – November 26, 2010

8 Lua Functions 51
8.1 Introduction 51
8.2 Tables 51
8.3 Math 58
8.4 Booleans 58
8.5 Strings 59
8.6 Numbers 65
8.7 Lpegs 65
8.8 IO 69
8.9 File 71
8.10 Dir 75
8.11 URL 76
8.12 OS 78
8.13 A few suggestions 81

9 The Lua interface code 83
9.1 Introduction 83
9.2 Characters 83
9.3 Fonts 88
9.4 Nodes 92
9.5 Resolvers 95
9.6 Mathematics (math) 98
9.7 Graphics (grph) 98
9.8 Languages (lang) 98
9.9 MetaPost (mlib) 98
9.10 LuaTEX (luat) 98
9.11 Tracing (trac) 98

10 Callbacks 99
10.1 Introduction 99
10.2 Actions 99
10.3 Tasks 101
10.4 Paragraph and page builders 105
10.5 Some examples 105

11 Backend code 107
11.1 Introduction 107
11.2 Structure 107
11.3 Data types 107
11.4 Managing objects 110
11.5 Resources 111
11.6 Annotations 112
11.7 Tracing 112

12 XML 113
12.1 Introduction 113

3

preliminary, uncorrected version – November 26, 2010

13 Summary 115

14 Special commands 119

Index 121

4

preliminary, uncorrected version – November 26, 2010

Introduction 5

preliminary, uncorrected version – November 26, 2010

Introduction

Sometimes you hear folks complain about the TEX input language, i.e. the backslashed com-
mands that determine your output. Of course, when alternatives are being discussed every
one has a favourite programming language. In practice coding a document in each of them
triggers similar sentiments with regards to coding as TEX itself does.

So, just for fun, I added a couple of commands to ConTEXt MkIV that permit coding a docu-
ment in Lua. In retrospect it has been surprisingly easy to implement a feature like this using
metatables. Of course it's a bit slower than using TEX as input language but sometimes the
Lua interface is more readable given the problem at hand.

After a while I decided to use that interface in non-critical core ConTEXt code and in styles
(modules) and solutions for projects. Using the Lua approach is sometimes more convenient,
especially if the code mostly manipulates data. For instance, if you process xml files of data-
base output you can use the interface that is available at the TEX end, or you can use Lua code
to do the work, or you can use a combination. So, from now on, in ConTEXt you can code
your style and document source in (a mixture of) TEX, xml, MetaPost and in Lua.

In the following chapters I will introduce typesetting in Lua, but as we rely on ConTEXt it is
unavoidable that some regular ConTEXt code shows up. The fact that you can ignore back-
slashes does not mean that you can do without knowledge of the underlying system. I expect
that the user is somewhat familiar with this macro package. Some chapters are follow ups
on articles or earlier publications.

Although much of the code is still experimental it is also rather stable. Some helpers might
disappear when the main functions become more clever. So, keep reading,

Hans Hagen
Hasselt NL
2009–2010

6

preliminary, uncorrected version – November 26, 2010

A bit of Lua 7

preliminary, uncorrected version – November 26, 2010

1 A bit of Lua

1.1 The language
Small is beautiful and this is definitely true for the programming language Lua (moon in
Portuguese). We had good reasons for using this language in LuaTEX: simplicity, speed,
syntax and size to mention a few. Of course personal taste also played a role and after using
a couple of scripting languages extensively the switch to Lua was rather pleasant.

As the Lua reference manual is an excellent book there is no reason to discuss the language in
great detail. Go out and buy ‘Programming in Lua' by the Lua team. Nevertheless I will give
a short summary of the important concepts but consult the book if you want more details.

1.2 Data types
The most basic data type is nil. When we define a variable, we don't need to give it a value:

local v

Here the variable v can get any value but till that happens it equals nil. There are simple
data types like numbers, booleans and strings. Here are some numbers:

local n = 1 + 2 * 3
local x = 2.3

Numbers are always floats and you can use the normal arithmetic operators on them as well
as functions defined in the math library. Inside TEX we have only integers (although for in-
stance dimensions can be specified in points using floats but that's more syntactic sugar).
One reason for using integers in TEX has been that this was the only way to guarantee porta-
bility across platforms. However, we're 30 years along the road and in Lua the floats are cross
platform identical, so we don't need to worry about compatibility.

Strings in Lua can be given between quotes or can be so called long strings.

local s = "Whatever"
local t = s .. ' you want'
local u = t .. [[to know]] .. [[--[about Lua!]--]]

The two periods indicate a concatenation. Strings are hashed, so when you say:

local s = "Whatever"
local t = s
local u = t

only one instance of Whatever is present in memory and this fact makes Lua very efficient
with respect to strings. Strings are constants and therefore when you change variable s,

8 A bit of Lua

preliminary, uncorrected version – November 26, 2010

variable t keeps its value. When you compare strings, in fact you compare pointers, a method
that is really fast. This compensates the hashing pretty well.

Booleans are normally used to keep a state or the result from an expression.

local b = false
local c = n > 10 and s == "whatever"

The other value is true. There is something that you need to keep in mind when you do
testing on variables that are yet unset.

local b = false
local n

The following applies when b and n are defined this way:

b == false true
n == false false
n == nil true
b == nil false
b == n false
n == nil true

There are a few more data types: tables and functions. Tables are very important and you
can recognize them by the same curly braces that make TEX famous:

local t = { 1, 2, 3 }
local u = { a = 4, b = 9, c = 16 }
local v = { [1] = "a", [3] = "2", [4] = false }
local w = { 1, 2, 3, a = 4, b = 9, c = 16 }

The t is an indexed table and u a hashed table. Because the second slot is empty, table v is
partially indexed (slot 1) and partially hashed (the others). There is a gray area there, for
instance, what happens when you nil a slot in an indexed table? In practice you will not run
into problems as you will either use a hashed table, or an indexed table (with no holes), so
table w is not uncommon.

We mentioned that strings are in fact shared (hashed) but that an assignment of a string to
a variable makes that variable behave like a constant. Contrary to that, when you assign a
table, and then copy that variable, both variables can be used to change the table. Take this:

local t = { 1, 2, 3 }
local u = t

We can change the content of the table as follows:

t[1], t[3]= t[3], t[1]

Here we swap two cells. This is an example of a parallel assigment. However, the following
does the same:

A bit of Lua 9

preliminary, uncorrected version – November 26, 2010

t[1], t[3]= u[3], u[1]

After this, both t and u still share the same table. This kind of behaviour is quite natural.

There are a few specialized data types in Lua, likecoroutines (built in), file (when opened),
lpeg (only when this library is linked in or loaded), bit (in recent versions). These are called
‘userdata' objects and in LuaTEX we have more userdata objects as we will see in later chap-
ters. Of them nodes are the most noticeable: they are the core data type of the TEX machinery.

Functions look like this:

function sum(a,b)
print(a, b, a + b)

end

or this:

function sum(a,b)
return a + b

end

There can be many arguments of all kind of types and there can be multiple return values.
A function is a real type, so you can say:

local f = function(s) print("the value is: " .. s) end

In all these examples we defined variables as local. This is a good practice and avoids
clashes. Now watch the following:

local n = 1

function sum(a,b)
n = n + 1
return a + b

end

function report()
print("number of summations: " .. n)

end

Here the variable n is visible after its definition and accessible for the two global functions.
Actually the variable is visible to all the code following, unless of course we define a new
variable with the same name. We can hide n as follows:

do
local n = 1

sum = function(a,b)
n = n + 1

10 A bit of Lua

preliminary, uncorrected version – November 26, 2010

return a + b
end

report = function()
print("number of summations: " .. n)

end
end

This example also shows another way of defining the function: by assignment.

The do ... end creates a so called closure. There are many places where such closures are
created, for instance in function bodies or branches like if ... then ... else. This means
that in the following snippet, variable b is not seen after the end:

if a > 10 then
local b = a + 10
print(b*b)

end

1.3 TEX's data types
We mentioned numbers. At the TEX end we have counters as well as dimensions. Both are
numbers but dimensions are specified differently

local n = tex.count[0]
local m = tex.dimen.lineheight
local o = tex.sp("10.3pt") -- sp or 'scaled point' is the smallest unit

The unit of dimension is ‘scaled point' and this is a pretty small unit: 10 points equal to
655360 such units.

Another accessible data type is tokens. They are automatically converted to strings and vice
versa.

tex.toks[0] = "message"
print(tex.toks[0])

1.4 Control structures
Loops are not much different from other languages: we have for do, while do and repeat
until. We start with the simplest case:

for index=1,10 do
print(index)

end

You can specify a step and go downward as well:

A bit of Lua 11

preliminary, uncorrected version – November 26, 2010

for index=22,2,-2 do
print(index)

end

Indexed tables can be traversed this way:

for index=1,#list do
print(index, list[index])

end

Hashed tables on the other hand are dealt with as follows:

for key, value in next, list do
print(key, value)

end

Here next is a built in function. There is more to say about this mechanism but the average
user will use only this variant. Slightly less efficient is the following, more readable variant:

for key, value in pairs(list) do
print(key, value)

end

and for an indexed table:

for index, value in ipairs(list) do
print(index, value)

end

Here the function call to pairs(list) returns next, list so there is an extra overhead of
one function call.

The other two loop variants, while and repeat, are similar.

i = 0
while i < 10 do

i = i + 1
print(i)

end

This can also be written as:

i = 0
repeat

i = i + 1
print(i)

until i = 10

Or:

12 A bit of Lua

preliminary, uncorrected version – November 26, 2010

i = 0
while true do

i = i + 1
print(i)
if i = 10 then

break
end

end

Of course you can use more complex expressions in such constructs.

1.5 Conditions
Conditions have the following form:

if a == b or c > d or e then
...

elseif f == g then
...

else
...

end

Watch the double ==. The complement of this is ~=. Precedence is similar to other languages.
In practice, as strings are hashed. Tests like

if key == "first" then
...

end

and

if n == 1 then
...

end

are equally efficient. There is really no need to use numbers to identify states instead of more
verbose strings.

1.6 Namespaces
Functionality can be grouped in libraries. There are a few default libraries, like string,
table, lpeg, math, io and os and LuaTEX adds some more, like node, tex and texio.

A library is in fact nothing more than a bunch of functionality organized using a table, where
the table provides a namespace as well as place to store public variables. Of course there can
be local (hidden) variables used in defining functions.

A bit of Lua 13

preliminary, uncorrected version – November 26, 2010

do
mylib = { }

local n = 1

function mylib.sum(a,b)
n = n + 1
return a + b

end

function mylib.report()
print("number of summations: " .. n)

end
end

The defined function can be called like:

mylib.report()

You can also create a shortcut, This speeds up the process because there are less lookups
then. In the following code multiple calls take place:

local sum = mylib.sum

for i=1,10 do
for j=1,10 do

print(i, j, sum(i,j))
end

end

mylib.report()

As Lua is pretty fast you should not overestimate the speedup, especially not when a function
is called seldom. There is an important side effect here: in the case of:

print(i, j, sum(i,j))

the meaning of sum is frozen. But in the case of

print(i, j, mylib.sum(i,j))

The current meaning is taken, that is: each time the interpreter will access mylib and get
the current meaning of sum. And there can be a good reason for this, for instance when the
meaning is adapted to different situations.

In ConTEXt we have quite some code organized this way. Although much is exposed (if only
because it is used all over the place) you should be careful in using functions (and data) that
are still experimental. There are a couple of general libraries and some extend the core Lua
libraries. You might want to take a look at the files in the distribution that start with l-, like

14 A bit of Lua

preliminary, uncorrected version – November 26, 2010

l-table.lua. These files are preloaded.1 For instance, if you want to inspect a table, you
can say:

local t = { "aap", "noot", "mies" }
table.print(t)

You can get an overview of what is implemented by running the following command:

context s-tra-02 --mode=ipad

todo: add nice synonym for this module and also add helpinfo at the to so that we can do context
--styles

1.7 Comment
You can add comments to your Lua code. There are basically two methods: one liners and
multi line comments.

local option = "test" -- use this option with care

local method = "unknown" --[[comments can be very long and when entered
this way they and span multiple lines]]

The so called long comments look like long strings preceded by -- and there can be more
complex boundary sequences.

1 In fact, if you write scripts that need their functionality, you can use mtxrun to process the script, as mtxrun
has the core libraries preloaded as well.

Getting started 15

preliminary, uncorrected version – November 26, 2010

2 Getting started

2.1 Some basics
To start with, I assume that you have either the so called ConTEXt minimals installed or
TEXLive. You only need LuaTEX and can forget about installing pdfTEX or XƎTEX, which saves
you some megabytes and hassle. Now, from the users perspective a ConTEXt run goes like:

context yourfile

and by default a file with suffix texwill be processed. There are however a few other options:

context yourfile.xml
context yourfile.rlx --forcexml
context yourfile.lua
context yourfile.pqr --forcelua
context yourfile.cld
context yourfile.xyz --forcecld

When processing a Lua file the given file is loaded and just processed. This options will
seldom be used as it is way more efficient to let mtxrun process that file. However, the last
two variants are what we will discuss here. The suffix cld is a shortcut for ConTEXt Lua
Document.

A simple cld file looks like this:

context.starttext()
context.chapter("Hello There!")
context.stoptext()

So yes, you need to know the ConTEXt commands in order to use this mechanism. In spite of
what you might expect, the codebase involved in this interface is not that large. If you know
ConTEXt, and if you know how to call commands, you basically can use this Lua method.

The examples that I will give are either (sort of) standalone, that is, they are dealt with from
Lua, or they are run within this document. Therefore you will see two patterns. If you want
to make your own documentation, then you can use this variant:

\startbuffer
context("See this!")
\stopbuffer

\typebuffer \ctxluabuffer

I use anonymous buffers here but you can also use named ones. The other variant is:

\startluacode
context("See this!")

16 Getting started

preliminary, uncorrected version – November 26, 2010

\stopluacode

This will process the code directly. Of course we could have encoded this document com-
pletely in Lua but that is not much fun for a manual.

2.2 The main command
There are a few rules that you need to be aware of. First of all no syntax checking is done.
Second you need to know what the given commands expects in terms of arguments. Third,
the type of your arguments matters:

nothing : just the command, no arguments
string : an argument with curly braces
array : a list between square backets (sometimes optional)
hash : an assignment list between square brackets
boolean : when true a newline is inserted

: when false, omit braces for the next argument

In the code above you have seen examples of this but here are some more:

context.chapter("Some title")
context.chapter({ "first" }, "Some title")
context.startchapter({ title = "Some title", label = "first" })

This blob of code is equivalent to:

\chapter{Some title}
\chapter[first]{Some title}
\startchapter[title={Some title},label=first]

You can simplify the third line of the Lua code to:

context.startchapter { title = "Some title", label = "first" }

In case you wonder what the distinction is between square brackets and curly braces: the
first category of arguments concerns settings or lists of options or names of instances whilc
the second category normally concerns some text to be typeset.

Strings are interpreted as TEX input, so:

context.mathematics("\\sqrt{2^3}")

or, if you don't want to escape:

context.mathematics([[\sqrt{2^3}]])

is okay. As TEX math is a language in its own and a de-facto standard way of inputting math
this is quite natural, even at the Lua end.

Getting started 17

preliminary, uncorrected version – November 26, 2010

2.3 Spaces and Lines
In a regular TEX file, spaces and newline characters are collapsed into one space. At the Lua
end the same happens. Compare the following examples. First we omit spaces:

context("left")
context("middle")
context("right")

leftmiddleright

Next we add spaces:

context("left")
context(" middle ")
context("right")

left middle right

We can also add more spaces:

context("left ")
context(" middle ")
context(" right")

left middle right

In principle all content becomes a stream and after that the TEX parser will do its normal
work: collapse spaces unless configured to do otherwise. Now take the following code:

context("before")
context("word 1")
context("word 2")
context("word 3")
context("after")

beforeword 1word 2word 3after

Here we get no spaces between the words at all, which is what we expect. So, how do we get
lines (or paragraphs)?

context("before")
context.startlines()
context("line 1")
context("line 2")
context("line 3")
context.stoplines()
context("after")

before

18 Getting started

preliminary, uncorrected version – November 26, 2010

line 1line 2line 3

after

This does not work out well, as again there are no lines seen at the TEX end. Newline tokens
are injected by passing true to the context command:

context("before")
context.startlines()
context("line 1") context(true)
context("line 2") context(true)
context("line 3") context(true)
context.stoplines()
context("after")

before

line 1
line 2
line 3

after

Don't confuse this with:

context("before") context.par()
context("line 1") context.par()
context("line 2") context.par()
context("line 3") context.par()
context("after") context.par()

before

line 1

line 2

line 3

after

There we use the regular \par command to finish the current paragraph and normally you
will use that method. In that case, when set, whitespace will be added between paragraphs.

2.4 Direct output
The ConTEXt user interface is rather consistent and the use of special input syntaxes is dis-
couraged. Therefore, the Lua interface using tables and strings works quite well. However,
imagine that you need to support some weird macro (or a primitive) that does not expect

Getting started 19

preliminary, uncorrected version – November 26, 2010

its argument between curly braces or brackets. The way out is to precede an argument by
another one with the value false. We call this the direct interface. This is demonstrated in
the following example.

\unexpanded\def\bla#1{[#1]}

\startluacode
context.bla(false,"***")
context.par()
context.bla("***")
\stopluacode

This results in:

[*]**

[***]

Here, the first call results in three * being passed, and #1 picks up the first token. The second
call to bla gets {***} passed so here #1 gets the triplet. In practice you will seldom need
the direct interface.

In ConTEXt for historical reasons, combinations have the following syntax:

\startcombination % optional specification, like [2*3]
{\framed{content one}} {caption one}
{\framed{content two}} {caption two}

\stopcombination

You can also say:

\startcombination
\combination {\framed{content one}} {caption one}
\combination {\framed{content two}} {caption two}

\stopcombination

When coded in Lua, we can feed the first variant as follows:

context.startcombination()
context.direct("one","two")
context.direct("one","two")

context.stopcombination()

To give you an idea what this looks like, we render it:

one one
two two

So, the direct function is basically a no-op and results in nothing by itself. Only arguments
are passed. An equivalent but bit more ugly looking is:

20 Getting started

preliminary, uncorrected version – November 26, 2010

context.startcombination()
context(false,"one","two")
context(false,"one","two")

context.stopcombination()

2.5 Catcodes
If you are familiar with TEX inner working, you will know that characters can have special
meanings. This meaning is determined by the characters catcode.

context("$x=1$")

This gives: x = 1 because the dollar tokens trigger inline math mode. If you think that this is
annoying, you can do the following:

context.pushcatcodes("text")
context("$x=1$")
context.popcatcodes()

Now we get: $x=1$. There are several catcode regimes of which only a few make sense in the
perspective of the cld interface.

ctx, ctxcatcodes, context the normal ConTEXt catcode regime
prt, prtcatcodes, protect the ConTEXt protected regime, used for modules
tex, texcatcodes, plain the traditional (plain) TEX regime
txt, txtcatcodes, text the ConTEXt regime but with less special characters
vrb, vrbcatcodes, verbatim a regime specially meant for verbatim
xml, xmlcatcodes a regime specially meant for xml processing

In the second case you can still get math:

context.pushcatcodes("text")
context.mathematics("x=1")
context.popcatcodes()

When entering a lot of math you can also consider this:

context.startimath()
context("x")
context("=")
context("1")
context.stopimath()

Module writers of course can use unprotect and protect as they do at the TEX end.

As we've seen, a function call to context acts like a print, as in:

context("test ")

Getting started 21

preliminary, uncorrected version – November 26, 2010

context.bold("me")
context(" first")

test me first

When more than one argument is given, the first argument is considered a format conforming
the string.format function.

context.startimath()
context("%s = %0.5f",utf.char(0x03C0),math.pi)
context.stopimath()

π = 3.14159

This means that when you say:

context(a,b,c,d,e,f)

the variables b till f are passed to the format and when the format does not call for them,
they will not end up in your output.

context("%s %s %s",1,2,3)
context(1,2,3)

The first line results in the three numbers being typeset, but in the second case only the
number 1 is typeset.

22

preliminary, uncorrected version – November 26, 2010

More on functions 23

preliminary, uncorrected version – November 26, 2010

3 More on functions

3.1 Why we need them
In a previous chapter we introduced functions as arguments. At first sight this feature looks
strange but you need to keep in mind that a call to a context function has no direct conse-
quences. It generates TEX code that is executed after the current Lua chunk ends and control
is passed back to TEX. Take the following code:

context.framed({
frame = "on",
offset = "5mm",
align = "middle"

},
context.input("knuth")

)

We call the function framed but before the function body is executed, the arguments get
evaluated. This means that input gets processed before framed gets done. As a result there
is no second argument to framed and no content gets passed: an error is reported. This is
why we need the indirect call:

context.framed({
frame = "on",
align = "middle"

},
function() context.input("knuth") end

)

This way we get what we want:

Thus, I came to the conclusion that the designer of a new
system must not only be the implementer and first large--scale

user; the designer should also write the first user manual.
The separation of any of these four components would have hurt TEX

significantly. If I had not participated fully in all these activities,
literally hundreds of improvements would never have been made, because I
would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person.
Once the initial design is complete and fairly robust, the real test begins

as people with many different viewpoints undertake their own experiments.

The function is delayed till the framed command is executed. If your applications use such
calls a lot, you can of course encapsulate this ugliness:

mycommands = mycommands or { }

24 More on functions

preliminary, uncorrected version – November 26, 2010

function mycommands.framed_input(filename)
context.framed({

frame = "on",
align = "middle"

},
function() context.input(filename) end

end

mycommands.framed_input("knuth")

Of course you can nest function calls:

context.placefigure(
"caption",
function()

context.framed({
frame = "on",
align = "middle"

},
function() context.input("knuth") end

)
end

)

Or you can use a more indirect method:

function text()
context.framed({

frame = "on",
align = "middle"

},
function() context.input("knuth") end

)
end

context.placefigure(
"none",
function() text() end

)

You can develop your own style and libraries just like you do with regular Lua code.

3.2 How we can avoid them
As many nested functions can obscure the code rather quickly, there is an alternative. In the
following examples we use test:

More on functions 25

preliminary, uncorrected version – November 26, 2010

\def\test#1{[#1]}

context.test("test 1",context(" test 2a "),"test 3")

This gives: test 2a [test 1]test 3. As you can see, the second argument is executed before
the encapsulating call to test. So, we should have packed it into a function but here is an
alternative:

context.test("test 1",context.delayed(" test 2a "),"test 3")

Now we get: [test 1] test 2a test 3. We can also delay functions themselves, look at this:

context.test("test 1",context.delayed.test(" test 2b "),"test 3")

The result is: [test 1][test 2b]test 3. This feature also conveniently permits the use of tempo-
rary variables, as in:

local f = context.delayed.test(" test 2c ")
context("before",f,"after")

Of course you can limit the amount of keystrokes even more by creating a shortcut:

local delayed = context.delayed

context.test("test 1",delayed.test(" test 2 "),"test 3")
context.test("test 4",delayed.test(" test 5 "),"test 6")

So, if you want you can produce rather readable code and readability of code is one of the
reasons why Lua was chosen in the first place.

There is also another mechanism available. In the next example the second argument is
actually a string.

local nested = context.nested

context.test("test 8",nested.test("test 9"),"test 10")

There is a pitfall here: a nested context command needs to be flushed expliclty, so in the case
of:

context.nested.test("test 9")

a string is created but nothing ends up at the TEX end. Flushing is up to you. Beware: nested
only works with the regular ConTEXt catcode regime.

3.3 Trial typesetting
Some typesetting mechanisms demand a preroll. For instance, when determining the most
optimal way to analyse and therefore typeset a table, it is necessary to typeset the content

26 More on functions

preliminary, uncorrected version – November 26, 2010

of cells first. Inside ConTEXt there is a state tagged ‘trial typesetting' which signals other
mechanisms that for instance counters should not be incremented more than once.

Normally you don't need to worry about these issues, but when writing the code that imple-
ments the Lua interface to ConTEXt, it definitely had to be taken into account as we either or
not can free cached (nested) functions.

You can influence this caching to some extend. If you say

function()
context("whatever")

end

the function will be removed from the cache when ConTEXt is not in the trial typesetting
state. You can prevent any removal of a function by returning true, as in:

function()
context("whatever")
return true

end

Whenever you run into a situation that you don't get the outcome that you expect, you can
consider returning true. However, keep in mind that it will take more memory, something
that only matters on big runs. You can force flushing the whole cache by:

context.restart()

An example of an occasion where you need to keep the function available is in repeated
content, for instance in headers and footers.

context.setupheadertexts {
function()

context.pagenumber()
return true

end
}

Of course it is not needed when you use the following method:

context.pagenumber("pagenumber")

Because here ConTEXt itself deals with the content driven by the keyword pagenumber.

A few Details 27

preliminary, uncorrected version – November 26, 2010

4 A few Details

4.1 Variables
Normally it makes most sense to use the English version of ConTEXt. The advantage is that
you can use English keywords, as in:

context.framed({
frame = "on",

},
"some text"

)

If you use the Dutch interface it looks like this:

context.omlijnd({
kader = "aan",

},
"wat tekst"

)

A rather neutral way is:

context.framed({
frame = interfaces.variables.on,

},
"some text"

)

But as said, normally you will use the English user interface so you can forget about these
matters. However, in the ConTEXt core code you will often see the variables being used this
way because there we need to support all user interfaces.

4.2 Modes
Context carries a concept of modes. You can use modes to create conditional sections in
your style (and/or content). You can control modes in your styles or you can set them at the
command line or in job control files. When a mode test has to be done at processing time,
then you need constructs like the following:

context.doifmodeelse("screen",
function()

... -- mode == screen
end,
function()

... -- mode ~= screen

28 A few Details

preliminary, uncorrected version – November 26, 2010

end
)

However, often a mode does not change during a run, and then we can use the following
method:

if tex.modes["screen"] then
...

else
...

end

Watch how the modes table lives in the tex namespace. We also have systemmodes. At the
TEX end these are mode names preceded by a *, so the following code is similar:

if tex.modes["*mymode"] then
-- this is the same

elseif tex.systemmodes["mymode"] then
-- test as this

else
-- but not this

end

Inside ConTEXt we also have so called constants, and again these can be consulted at the Lua
end:

if tex.constants["someconstant'] then
...

else
...

end

But you will hardly need these and, as they are often not public, their meaning can change,
unless of course they are documented as public.

4.3 Token lists
There is normally no need to mess around with nodes and tokens at the Lua end yourself.
However, if you do, then you might want to flush them as well. Say that at the TEX end we
have said:

\toks0 = {Don't get \inframed{framed}!}

Then at the Lua end you can say:

context(tex.toks[0])

and get: Don't get framed ! In fact, token registers are exposed as strings so here, register
zero has type string and is treated as such.

A few Details 29

preliminary, uncorrected version – November 26, 2010

context("< %s >",tex.toks[0])

This gives: < Don't get framed ! >. But beware, if you go the reverse way, you don't get what
you might expect:

tex.toks[0] = [[\framed{oeps}]]

If we now say \the\toks0 we will get Don't get framed! as all tokens are considered
to be letters.

4.4 Node lists
If you're not deep into TEX you will never feel the need to manipulate nodelists yourself, but
you might want to flush boxes. As an example we put something in box zero (one of the
scratch boxes).

\setbox0 = \hbox{Don't get \inframed{framed}!}

At the TEX end you can flush this box (\box0) or take a copy (\copy0). At the Lua end you
would do:

context.copy()
context.direct(0)

or:

context.copy(false,0)

but this works as well:

context(node.copy_list(tex.box[0]))

So we get: Don't get framed ! If you do:

context(tex.box[0])

you also need to make sure that the box is freed but let's not go into those details now.

30

preliminary, uncorrected version – November 26, 2010

Some more examples 31

preliminary, uncorrected version – November 26, 2010

5 Some more examples

5.1 Appetizer
Before we give some more examples, we will have a look at the way the title page is made.
This way you get an idea what more is coming.

local todimen, random = number.todimen, math.random

context.startTEXpage()

local paperwidth = tex.dimen.paperwidth
local paperheight = tex.dimen.paperheight
local nofsteps = 25
local firstcolor = "darkblue"
local secondcolor = "white"

context.definelayer(
{ "titlepage" }

)

context.setuplayer(
{ "titlepage" },
{

width = todimen(paperwidth),
height = todimen(paperheight),

}
)

context.setlayerframed(
{ "titlepage" },
{ offset = "-5pt" },
{

width = todimen(paperwidth),
height = todimen(paperheight),
background = "color",
backgroundcolor = firstcolor,
backgroundoffset = "10pt",
frame = "off",

},
""

)

local settings = {
frame = "off",

32 Some more examples

preliminary, uncorrected version – November 26, 2010

background = "color",
backgroundcolor = secondcolor,
foregroundcolor = firstcolor,
foregroundstyle = "type",

}

for i=1, nofsteps do
for j=1, nofsteps do

context.setlayerframed(
{ "titlepage" },
{

x = todimen((i-1) * paperwidth /nofsteps),
y = todimen((j-1) * paperheight/nofsteps),
rotation = random(360),

},
settings,
"CLD"

)
end

end

context.tightlayer(
{ "titlepage" }

)

context.stopTEXpage()

return true

This does not look that bad, does it? Of course in pure TEX code it looks mostly the same
but loops and calculations feel a bit more natural in Lua then in TEX. The result is shown in
figure 5.1. The actual cover page was derived from this.

5.2 A few examples
As it makes most sense to use the Lua interface for generated text, here is another example
with a loop:

context.startitemize { "a", "packed", "two" }
for i=1,10 do

context.startitem()
context("this is item %i",i)

context.stopitem()
end

context.stopitemize()

Some more examples 33

preliminary, uncorrected version – November 26, 2010

CLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD
CL

D
CL

D

CLD

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD
CLD

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD
CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD
CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD
CL

D
CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD
CLD

CLD
CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD
CLD

CLD

CLD

CLD
CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD
CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

Figure 5.1 The simplified cover page.

a. this is item 1
b. this is item 2
c. this is item 3
d. this is item 4
e. this is item 5
f. this is item 6
g. this is item 7
h. this is item 8
i. this is item 9
j. this is item 10

Just as you can mix TEX with xml and MetaPost, you can define bits and pieces of a document
in Lua. Tables are good candidates:

local one = {
align = "middle",
style = "type",

}
local two = {

align = "middle",
style = "type",

34 Some more examples

preliminary, uncorrected version – November 26, 2010

32 17 77 23 60 12 53 21 49 91 73 80 9 16 47 65 4 58 86 79
72 25 80 85 61 94 78 41 56 1 51 53 12 5 94 51 49 60 42 96
41 26 46 10 45 23 8 40 5 98 1 60 77 99 73 12 17 93 86 73
61 65 46 3 55 13 13 92 57 79 39 4 71 39 1 41 37 74 6 89
22 61 19 4 67 8 92 75 5 52 48 50 11 72 97 32 14 14 42 41
25 74 44 66 98 82 9 81 91 70 67 58 47 3 5 49 47 65 16 70
73 53 40 72 25 79 58 7 16 43 94 83 18 70 12 46 57 71 47 27
47 25 73 33 48 41 22 27 46 4 73 30 46 44 39 30 56 58 35 31
70 6 86 96 32 8 48 47 64 88 95 62 67 69 55 39 71 63 37 60
25 70 49 27 28 42 26 7 82 99 87 53 62 69 37 47 90 39 16 13

Table 5.1 A table generated by Lua.

background = "color",
backgroundcolor = "darkblue",
foregroundcolor = "white",

}
local random = math.random
context.startlinecorrection { "blank" }

context.bTABLE { framecolor = "darkblue" }
for i=1,10 do

context.bTR()
for i=1,20 do

local r = random(99)
context.bTD(r < 50 and one or two)
context("%#2i",r)
context.eTD()

end
context.eTR()

end
context.eTABLE()

context.stoplinecorrection()

Here we see a function call to context in the most indented line. The first argument is a
format that makes sure that we get two digits and the random number is substituted into
this format. The result is shown in table 5.1. The line correction is ignored when we use this
table as a float, otherwise it assures proper vertical spacing around the table. Watch how we
define the tables one and two beforehand. This saves 198 redundant table constructions.

Not all code will look as simple as this. Consider the following:

context.placefigure(
"caption",

Some more examples 35

preliminary, uncorrected version – November 26, 2010

function() context.externalfigure({ "cow.pdf" }) end
)

Here we pass an argument wrapped in a function. If we would not do that, the external
figure would end up wrong, as arguments to functions are evaluated before the function
that gets them (we already showed some alternative approaches in previous chapters). A
function argument is treated as special and in this case the external figure ends up right.
Here is another example:

context.placefigure("Two cows!",function()
context.bTABLE()

context.bTR()
context.bTD()

context.externalfigure(
{ "cow.pdf" },
{ width = "3cm", height = "3cm" }

)
context.eTD()
context.bTD { align = "{lohi,middle}" }

context("and")
context.eTD()
context.bTD()

context.externalfigure(
{ "cow.pdf" },
{ width = "4cm", height = "3cm" }

)
context.eTD()

context.eTR()
context.eTABLE()

end)

In this case the figure is not an argument so it gets flushed sequentially with the rest.

and

Figure 5.2 Two cows!

5.3 Styles
Say that you want to typeset a word in a bold font. You can do that this way:

context("This is ")

36 Some more examples

preliminary, uncorrected version – November 26, 2010

context.bold("important")
context("!")

Now imagine that you want this important word to be in red too. As we have a nested com-
mand, we end up with a nested call:

context("This is ")
context.bold(function() context.color({ "red" }, "important") end)
context("!")

or

context("This is ")
context.bold(context.delayed.color({ "red" }, "important"))
context("!")

In that case it's good to know that there is a command that combines both features:

context("This is ")
context.style({ style = "bold", color = "red" }, "important")
context("!")

But that is still not convenient when we have to do that often. So, you can wrap the style
switch in a function.

local function mycommands.important(str)
context.style({ style = "bold", color = "red" }, str)

end

context("This is ")
mycommands.important("important")
context(", and ")
mycommands.important("this")
context(" too !")

Or you can setup a named style:

context.setupstyle({ "important" }, { style = "bold", color = "red" })

context("This is ")
context.style({ "important" }, "important")
context(", and ")
context.style({ "important" }, "this")
context(" too !")

Or even define one:

context.definestyle({ "important" }, { style = "bold", color = "red" })

context("This is ")

Some more examples 37

preliminary, uncorrected version – November 26, 2010

context.important("important")
context(", and ")
context.important("this")
context(" too !")

This last solution is especially handy for more complex cases:

context.definestyle({ "important" }, { style = "bold", color = "red" })

context("This is ")
context.startimportant()
context.inframed("important")
context.stopimportant()
context(", and ")
context.important("this")
context(" too !")

This is important , and this too !

5.4 A complete example
One day my 6 year old niece Lorien was at the office and wanted to know what I was doing.
As I knew she was practicing calculus at school I wrote a quick and dirty script to generate
sheets with exercises. The most impressive part was that the answers were included. It was a
rather braindead bit of Lua, written in a few minutes, but the weeks after I ended up running
it a few more times, for her and her friends, every time a bit more difficult and also using
different calculus. It was that script that made me decide to extend the basic cld manual into
this more extensive document.

We generate three columns of exercises. Each exercise is a row in a table. The last argument
to the function determines if answers are shown.

local random = math.random

local function ForLorien(n,maxa,maxb,answers)
context.startcolumns { n = 3 }
context.starttabulate { "|r|c|r|c|r|" }
for i=1,n do

local sign = random(0,1) > 0.5
local a, b = random(1,maxa or 99), random(1,max or maxb or 99)
if b > a and not sign then a, b = b, a end
context.NC()
context(a)
context.NC()
context.mathematics(sign and "+" or "-")
context.NC()
context(b)

38 Some more examples

preliminary, uncorrected version – November 26, 2010

context.NC()
context("=")
context.NC()
context(answers and (sign and a+b or a-b))
context.NC()
context.NR()

end
context.stoptabulate()
context.stopcolumns()
context.page()

end

This is a typical example of where it's more convenient to write the code in Lua that in TEX's
macro language. As a consequence setting up the page also happens in Lua:

context.setupbodyfont {
"palatino",
"14pt"

}

context.setuplayout {
backspace = "2cm",
topspace = "2cm",
header = "1cm",
footer = "0cm",
height = "middle",
width = "middle",

}

This leave us to generate the document. There is a pitfall here: we need to use the same
random number for the exercises and the answers, so we freeze and defrost it. Functions in
the commands namespace implement functionality that is used at the TEX end but better can
be done in Lua than in TEX macro code. Of course these functions can also be used at the Lua
end.

context.starttext()

local n = 120

commands.freezerandomseed()

ForLorien(n,10,10)
ForLorien(n,20,20)
ForLorien(n,30,30)
ForLorien(n,40,40)
ForLorien(n,50,50)

commands.defrostrandomseed()

Some more examples 39

preliminary, uncorrected version – November 26, 2010

ForLorien(n,10,10,true)
ForLorien(n,20,20,true)
ForLorien(n,30,30,true)
ForLorien(n,40,40,true)
ForLorien(n,50,50,true)

context.stoptext()

1

8 − 5 =
4 + 2 =
8 − 2 =
4 + 7 =
5 + 1 =
9 − 8 =
8 + 3 =
6 − 6 =
7 − 4 =
7 − 2 =
7 − 1 =
7 − 4 =
6 − 3 =
5 − 1 =
8 − 2 =
3 + 2 =
7 + 7 =
5 + 8 =

10 − 1 =
10 − 6 =
8 − 2 =
8 + 8 =
6 + 4 =

10 + 7 =
1 + 7 =
7 + 7 =
8 − 2 =
8 − 6 =

10 − 6 =
8 − 1 =
6 + 4 =
3 + 1 =
4 + 6 =

10 + 7 =
1 + 10 =

10 + 3 =
10 − 7 =
7 + 3 =
2 + 9 =
8 − 5 =

10 − 4 =
5 − 1 =

10 + 8 =
9 + 8 =
9 − 3 =
5 − 1 =
6 − 1 =
7 + 7 =
6 − 5 =
7 + 3 =
4 − 2 =
3 + 7 =

10 − 3 =
3 − 2 =
9 − 4 =
8 + 5 =
8 − 6 =
4 + 5 =
6 − 5 =
8 − 1 =
2 + 6 =
4 − 3 =
4 + 1 =
6 − 1 =
1 + 5 =
3 + 5 =

10 + 7 =
4 + 3 =
4 − 2 =
7 + 6 =
7 − 3 =
5 + 2 =
8 − 5 =
6 − 5 =
3 + 10 =
6 − 3 =
6 + 4 =
3 + 4 =
6 + 6 =
5 − 4 =

9 + 10 =
7 − 3 =
5 − 4 =
5 + 4 =
8 + 9 =
5 + 6 =
8 + 4 =
2 − 1 =

10 − 6 =
10 − 3 =
6 + 6 =
1 + 7 =
5 − 3 =
9 + 10 =

10 − 7 =
9 + 6 =

10 − 3 =
10 + 8 =
7 − 1 =
7 + 3 =
9 + 10 =
3 − 2 =
1 + 1 =
5 + 3 =
8 + 4 =

10 − 4 =
5 − 4 =
9 − 1 =
6 + 9 =
6 + 9 =
5 + 2 =
1 + 1 =
1 + 7 =
5 + 9 =
6 − 4 =
4 + 3 =
4 + 8 =
1 + 10 =
5 + 1 =
5 − 1 =

6

8 − 5 = 3
4 + 2 = 6
8 − 2 = 6
4 + 7 = 11
5 + 1 = 6
9 − 8 = 1
8 + 3 = 11
6 − 6 = 0
7 − 4 = 3
7 − 2 = 5
7 − 1 = 6
7 − 4 = 3
6 − 3 = 3
5 − 1 = 4
8 − 2 = 6
3 + 2 = 5
7 + 7 = 14
5 + 8 = 13

10 − 1 = 9
10 − 6 = 4
8 − 2 = 6
8 + 8 = 16
6 + 4 = 10

10 + 7 = 17
1 + 7 = 8
7 + 7 = 14
8 − 2 = 6
8 − 6 = 2

10 − 6 = 4
8 − 1 = 7
6 + 4 = 10
3 + 1 = 4
4 + 6 = 10

10 + 7 = 17
1 + 10 = 11

10 + 3 = 13
10 − 7 = 3
7 + 3 = 10
2 + 9 = 11
8 − 5 = 3

10 − 4 = 6
5 − 1 = 4

10 + 8 = 18
9 + 8 = 17
9 − 3 = 6
5 − 1 = 4
6 − 1 = 5
7 + 7 = 14
6 − 5 = 1
7 + 3 = 10
4 − 2 = 2
3 + 7 = 10

10 − 3 = 7
3 − 2 = 1
9 − 4 = 5
8 + 5 = 13
8 − 6 = 2
4 + 5 = 9
6 − 5 = 1
8 − 1 = 7
2 + 6 = 8
4 − 3 = 1
4 + 1 = 5
6 − 1 = 5
1 + 5 = 6
3 + 5 = 8

10 + 7 = 17
4 + 3 = 7
4 − 2 = 2
7 + 6 = 13
7 − 3 = 4
5 + 2 = 7
8 − 5 = 3
6 − 5 = 1
3 + 10 = 13
6 − 3 = 3
6 + 4 = 10
3 + 4 = 7
6 + 6 = 12
5 − 4 = 1

9 + 10 = 19
7 − 3 = 4
5 − 4 = 1
5 + 4 = 9
8 + 9 = 17
5 + 6 = 11
8 + 4 = 12
2 − 1 = 1

10 − 6 = 4
10 − 3 = 7
6 + 6 = 12
1 + 7 = 8
5 − 3 = 2
9 + 10 = 19

10 − 7 = 3
9 + 6 = 15

10 − 3 = 7
10 + 8 = 18
7 − 1 = 6
7 + 3 = 10
9 + 10 = 19
3 − 2 = 1
1 + 1 = 2
5 + 3 = 8
8 + 4 = 12

10 − 4 = 6
5 − 4 = 1
9 − 1 = 8
6 + 9 = 15
6 + 9 = 15
5 + 2 = 7
1 + 1 = 2
1 + 7 = 8
5 + 9 = 14
6 − 4 = 2
4 + 3 = 7
4 + 8 = 12
1 + 10 = 11
5 + 1 = 6
5 − 1 = 4

exercises answers

Figure 5.3 Lorien's challenge.

A few pages of the result are shown in figure 5.3. In the ConTEXt distribution more advanced
version can be found in s-edu-01.cld as I was also asked to generate multiplication and
table exercises. I also had to make sure that there were no duplicates on a page as she com-
plained that was not good. There a set of sheets is generated with:

moduledata.educational.calculus.generate {
name = "Bram Otten",
fontsize = "12pt",
columns = 2,
run = {

{ method = "bin_add_and_subtract", maxa = 8, maxb = 8 },
{ method = "bin_add_and_subtract", maxa = 16, maxb = 16 },
{ method = "bin_add_and_subtract", maxa = 32, maxb = 32 },
{ method = "bin_add_and_subtract", maxa = 64, maxb = 64 },
{ method = "bin_add_and_subtract", maxa = 128, maxb = 128 },

40 Some more examples

preliminary, uncorrected version – November 26, 2010

},
}

Graphics 41

preliminary, uncorrected version – November 26, 2010

6 Graphics

6.1 The regular interface
If you are familiar with ConTEXt, which by now probably is the case, you will have noticed
that it integrates the MetaPost graphic subsystem. Drawing a graphic is not that complex:

context.startMPcode()
context [[

draw
fullcircle scaled 1cm
withpen pencircle scaled 1mm
withcolor .5white
dashed dashpattern (on 2mm off 2mm) ;

]]
context.stopMPcode()

We get a gray dashed circle rendered with an one millimeter thick line:

So, we just use the regular commands and pass the drawing code as strings. Although Meta-
Post is a rather normal language and therefore offers loops and conditions and the lot, you
might want to use Lua for anything else than the drawing commands. Of course this is much
less efficient, but it could be that you don't care about speed. The next example demonstrates
the interface for building graphics piecewise.

context.resetMPdrawing()

context.startMPdrawing()
context([[fill fullcircle scaled 5cm withcolor (0,0,.5) ;]])
context.stopMPdrawing()

context.MPdrawing("pickup pencircle scaled .5mm ;")
context.MPdrawing("drawoptions(withcolor white) ;")

for i=0,50,5 do
context.startMPdrawing()
context("draw fullcircle scaled %smm ;",i)
context.stopMPdrawing()

end

for i=0,50,5 do
context.MPdrawing("draw fullsquare scaled " .. i .. "mm ;")

end

42 Graphics

preliminary, uncorrected version – November 26, 2010

context.MPdrawingdonetrue()

context.getMPdrawing()

This gives:

I the first loop we can use the format options associated with the simple context call. This
will not work in the second case. Even worse, passing more than one argument will definitely
give a faulty graphic definition. This is why we have a special interface for MetaFun. The
code above can also be written as:

local metafun = context.metafun

metafun.start()

metafun("fill fullcircle scaled 5cm withcolor %s ;",
metafun.color("darkblue"))

metafun("pickup pencircle scaled .5mm ;")
metafun("drawoptions(withcolor white) ;")

for i=0,50,5 do
metafun("draw fullcircle scaled %smm ;",i)

end

for i=0,50,5 do
metafun("draw fullsquare scaled %smm ;",i)

end

metafun.stop()

Watch the call to color, this will pass definitions at the TEX end to MetaPost. Of course you
really need to ask yourself “Do I want to use MetaPost this way?”. Using Lua loops instead
of MetaPost ones makes much more sense in the following case:

local metafun = context.metafun

function metafun.barchart(t)

Graphics 43

preliminary, uncorrected version – November 26, 2010

metafun.start()
local t = t.data
for i=1,#t do

metafun("draw unitsquare xyscaled(%s,%s) shifted (%s,0);",
10, t[i]*10, i*10)

end
metafun.stop()

end

local one = { 1, 4, 6, 2, 3, }
local two = { 8, 1, 3, 5, 9, }

context.startcombination()
context.combination(metafun.delayed.barchart { data = one }, "one")
context.combination(metafun.delayed.barchart { data = two }, "two")

context.stopcombination()

We get two barcharts alongside:

one two

local template = [[
path p, q ; color c[] ;
c1 := \MPcolor{darkblue} ;
c2 := \MPcolor{darkred} ;
p := fullcircle scaled 50 ;
l := length p ;
n := %s ;
q := subpath (0,%s/n*l) of p ;
draw q withcolor c2 withpen pencircle scaled 1 ;
fill fullcircle scaled 5 shifted point length q of q withcolor c1 ;
setbounds currentpicture to unitsquare shifted (-0.5,-0.5) scaled 60 ;
draw boundingbox currentpicture withcolor c1 ;
currentpicture := currentpicture xsized(1cm) ;

]]

local function steps(n)
for i=0,n do

context.metafun.start()
context.metafun(template,n,i)

context.metafun.stop()

44 Graphics

preliminary, uncorrected version – November 26, 2010

if i < n then
context.quad()

end
end

end

context.hbox(function() steps(10) end)

To some extent we fool ourselves with this kind of Luafication of MetaPost code. Of course
we can make a nice MetaPost library and put the code in a macro instead. In that sense, doing
this in ConTEXt directly often gives better and more efficient code.

Of course you can use all relevant commands in the Lua interface, like:

context.startMPpage()
context("draw origin")
for i=0,100,10 do

context("..{down}(%d,0)",i)
end
context(" withcolor \\MPcolor{darkred} ;")

context.stopMPpage()

to get a graphic that has its own page. Don't use the metafun namespace here, as it will not
work here. This drawing looks like:

6.2 The Lua interface
todo

Verbatim 45

preliminary, uncorrected version – November 26, 2010

7 Verbatim

7.1 Introduction
If you are familiar with traditional TEX, you know that some characters have special mean-
ings. For instance a $ starts and ends inline math mode:

$e=mc^2$

If we want to typeset math from the Lua end, we can say:

context.mathematics("e=mc^2")

This is in fact:

\mathematics{e=mc^2}

However, if we want to typeset a dollar and use the ctxcatcodes regime, we need to ex-
plicitly access that character using \char or use a command that expands into the character
with catcode other.

One step further is that we typeset all characters as they are and this is called verbatim. In
that mode all characters are tokens without any special meaning.

7.2 Special treatment
The formula in the introduction can be typeset verbatim as follows:

context.verbatim("$e=mc^2$")

This gives:

$e=mc^2$

You can also do things like this:

context.verbatim.bold("$e=mc^2$")

Which gives:

$e=mc^2$

So, within the verbatim namespace, each command gets its arguments verbatim.

context.verbatim.inframed({ offset = "0pt" }, "$e=mc^2$")

Here we get: $e=mc^2$. So, settings and alike are processed as if the user had used a regular
context.inframed but the content comes out verbose.

46 Verbatim

preliminary, uncorrected version – November 26, 2010

If you wonder why verbatim is needed as we also have the type function (macro) the answer
is that it is faster, easier to key in, and sometimes needed.

7.3 Multiple lines
Currently we have to deal with linebreaks in a special way. This is due to the way TEX deals
with linebreaks. In fact, when we print something to TEX, the text after a \n is simply ignored.

For this reason we have a few helpers. If you want to put something in a buffer, you cannot
use the regular buffer functions unless you make sure that they are not overwritten while
you're still at the Lua end.

context.tobuffer("temp",str)
context.getbuffer("temp")

Another helper is the following. It splits the string into lines and feeds them piecewise using
the context function and in the process adds a space at the end of the line (as this is what
TEX normally does.

context.tolines(str)

7.4 Pretty printing
In ConTEXt MkII there have always been pretty printing options. We needed it for manuals
and it was also handy to print sources in the same colors as the editor uses. Most of those
pretty printers work in a line-by-line basis, but some are more complex, especially when
comments or strings can span multiple lines.

When the first versions of LuaTEX showed up, rewriting the MkII code to use Lua was a nice
exercise and the code was not that bad, but when lpeg showed up, I put it on the agenda to
reimplement them again.

We only ship a few pretty printers. Users normally have their own preferences and it's not
easy to make general purpose pretty printers. This is why the new framework is a bit more
flexible and permits users to kick in their own code.

Pretty printing involves more than coloring some characters or words:

• spaces should honoured and can be visualized
• newlines and empty lins need to be honoured as well
• optionally lines have to be numbered but
• wrapped around lines should not be numbered

It's not much fun to deal with these matters each time that you write a pretty printer. This
is why we can start with an existing one like the default pretty printer. We show several
variants of doing the same. We start with a simple clone of the default parser.

local P, V = lpeg.P, lpeg.V

Verbatim 47

preliminary, uncorrected version – November 26, 2010

local grammar = visualizers.newgrammar("default", {
pattern = V("default:pattern"),
visualizer = V("pattern")^1

})

local parser = P(grammar)

visualizers.register("test-0", { parser = parser })

We distinguish between grammars (tables with rules), parsers (a grammar turned into an
lpeg expression), and handlers (collections of functions that can be applied. All three are
registered under a name and the verbatim commands can refer to that name.

\starttyping[option=test-0,color=]
Test 123,
test 456 and
test 789!
\stoptyping

Nothing special happens here. We just get straightforward verbatim.

Test 123,
test 456 and
test 789!

Next we are going to color digits. We collect as many as possible in a row, so that we minimize
the calls to the colorizer.

local patterns, P, V = lpeg.patterns, lpeg.P, lpeg.V

local function colorize(s)
context.color{"darkred"}
visualizers.writeargument(s)

end

local grammar = visualizers.newgrammar("default", {
digit = patterns.digit^1 / colorize,
pattern = V("digit") + V("default:pattern"),
visualizer = V("pattern")^1

})

local parser = P(grammar)

visualizers.register("test-1", { parser = parser })

Watch how we define a new rule for the digits and overload the pattern rule. We can refer to
the default rule by using a prefix. This is needed when we define a rule with the same name.

\starttyping[option=test-1,color=]

48 Verbatim

preliminary, uncorrected version – November 26, 2010

Test 123,
test 456 and
test 789!
\stoptyping

This time the digits get colored.

Test 123,
test 456 and
test 789!

In a similar fashion we can colorize letters. As with the previous example, we use ConTEXt
commands at the Lua end.

\starttyping[option=test-2,color=]
Test 123,
test 456 and
test 789!
\stoptyping

Again we get some coloring.

Test 123,
test 456 and
test 789!

It will be clear that the amount of rules and functions is larger when we use a more complex
parser. It is for this reason that we can group functions in handlers. We can also make a
pretty printer configurable by defining handlers at the TEX end.

\definestartstop
[MyDigit]
[style=bold,color=darkred]

\definestartstop
[MyLowercase]
[style=bold,color=darkgreen]

\definestartstop
[MyUppercase]
[style=bold,color=darkblue]

The Lua code now looks different. Watch out. We need an indirect call to for instance
MyDigit because a second argument can be passed: the settings for this environment and
you don't want that get passed to MyDigit and friends.

\starttyping[option=test-3,color=]
Test 123,
test 456 and

Verbatim 49

preliminary, uncorrected version – November 26, 2010

test 789!
\stoptyping

We get digits, upper- and lowercase characters colored:

Test 123,
test 456 and
test 789!

You can also use parsers that don't use lpeg:

local function parser(s)
visualizers.write("["..s.."]")

end

visualizers.register("test-4", { parser = parser })

\starttyping[option=test-4,space=on,color=darkred]
Test 123,
test 456 and
test 789!
\stoptyping

The function visualizer.write takes care of spaces and newlines.

[Test␣123,
test␣456␣and
test␣789!]

We have a few more helpers:

visualizers.write interprets the argument and applies methods
visualizers.writenewline goes to the next line (similar to \par
visualizers.writeemptyline inserts an empty line (similer to \blank
visualizers.writespace inserts a (visible) space
visualizers.writedefault writes the argument verbatim without interpretation

These mechanism have quite some overhead in terms of function calls. In the worst case each
token needs a (nested) call. However, doing all this at the TEX end also comes at a price. So,
in practice this approach is more flexible but without too large a penalty.

In all these examples we typeset the text verbose: what is keyed in normally comes out (either
or not with colors), so spaces stay spaces and linebreaks are kept.

local function parser(s)
local s = string.gsub(s,"show","demonstrate")
local s = string.gsub(s,"'re"," are")
context(s)

end

50 Verbatim

preliminary, uncorrected version – November 26, 2010

visualizers.register("test-5", { parser = parser })

We can apply this visualizer as follows:

\starttyping[option=test-5,color=darkred,style=]
This is just some text to show what we can do with this mechanism. In
spite of what you might think we're not bound to verbose text.
\stoptyping

This time the text gets properly aligned:

This is just some text to demonstrate what we can do with this mechanism. In spite
of what you might think we are not bound to verbose text.

It often makes sense to use a buffer:

\startbuffer[demo]
This is just some text to show what we can do with this mechanism. In
spite of what you might think we're not bound to verbose text.
\stopbuffer

Instead of processing the buffer in verbatim mode you can then process it directly:

\setuptyping[file][option=test-5,color=darkred,style=]
\processbuffer[demo]

Which gives:

This is just some text to demonstrate what we can do with this mechanism. In spite of what
you might think we are not bound to verbose text.

In this case, the space is a normal space and the fixed verbatim space, which looks nicer.

Lua Functions 51

preliminary, uncorrected version – November 26, 2010

8 Lua Functions

8.1 Introduction
When you run ConTEXt you have some libraries preloaded. If you look into the Lua files
you will more than is discussed here, but keep in mind that what is not documented, might
be gone or done different one day. Some extensions live in the same namespace as those
provided by stock Lua and LuaTEX, others have their own. There are many more functions
and the more obscure (or never being used) ones will go away.

The Lua code in ConTEXt is organized in quite some modules. Those with names likel-*.lua
are rather generic and are automatically available when you use mtxrun to run a Lua file.
These are discusses in this chapter. A few more modules have generic properties, like some
in the categories util-*.lua, trac-*.lua, luat-*.lua, data-*.lua and lxml-*.lua.
They contain more specialized functions and are discussed elsewhere.

8.2 Tables

[lua] concat

These functions come with Lua itself and are discussed in detail in the Lua reference manual
so we stick to some examples. The concat function stitches table entries in an indexed table
into one string, with an optional separator in between. If can also handle a slice of the table

local str = table.concat(t)
local str = table.concat(t,separator)
local str = table.concat(t,separator,first)
local str = table.concat(t,separator,first,last)

Only strings and numbers can be concatenated.

table.concat({"a","b","c","d","e"})

abcde

table.concat({"a","b","c","d","e"},"+")

a+b+c+d+e

table.concat({"a","b","c","d","e"},"+",2,3)

b+c

[lua] insert remove

You can use insert and remove for adding or replacing entries in an indexed table.

52 Lua Functions

preliminary, uncorrected version – November 26, 2010

table.insert(t,value,position)
value = table.remove(t,position)

The position is optional and defaults to the last entry in the table. For instance a stack is built
this way:

table.insert(stack,"top")
local top = table.remove(stack)

Beware, the insert function returns nothing. You can provide an additional position:

table.insert(list,"injected in slot 2",2)
local thiswastwo = table.remove(list,2)

[lua] unpack

You can access entries in an indexed table as follows:

local a, b, c = t[1], t[2], t[3]

but this does the same:

local a, b, c = table.unpack(t)

This is less efficient but there are situations where unpack comes in handy.

[lua] sort

Sorting is done with sort, a function that does not return a value but operates on the given
table.

table.sort(t)
table.sort(t,comparefunction)

The compare function has to return a consistent equivalent of true or false. For sorting
more complex data structures there is a specialized sort module available.

t={"a","b","c"} table.sort(t)

t={ "a", "b", "c", }

t={"a","b","c"} table.sort(t,function(x,y) return x > y end)

t={ "c", "b", "a", }

t={"a","b","c"} table.sort(t,function(x,y) return x < y end)

t={ "a", "b", "c", }

Lua Functions 53

preliminary, uncorrected version – November 26, 2010

keys sortedkeys sortedhashkeys sortedhash

The keys function returns an indexed list of keys. The order is undefined as it depends on
how the table was constructed. A sorted list is provided by sortedkeys. This function is
rather liberal with respect to the keys. If the keys are strings you can use the faster alternative
sortedhashkeys.

local s = table.keys (t)
local s = table.sortedkeys (t)
local s = table.sortedhashkeys (t)

Because a sorted list is often processed there is also an iterator:

for key, value in table.sortedhash(t) do
print(key,value)

end

There is also a synonym sortedpairs which sometimes looks more natural when used
alongside the pairs and ipairs iterators.

table.keys({ [1] = 2, c = 3, [true] = 1 })

t={ 1, true, "c", }

table.sortedkeys({ [1] = 2, c = 3, [true] = 1 })

t={ 1, "c", true, }

table.sortedhashkeys({ a = 2, c = 3, b = 1 })

t={ "a", "b", "c", }

serialize print tohandle tofile

The serialize function converts a table into a verbose representation. The print function
does the same but prints the result to the console which is handy for tracing. The tofile
function writes the table to a file, using reasonable chunks so that less memory is used. The
fourth variant tohandle takes a handle so that you can do whatever you like with the result.

table.serialize (root, name, reduce, noquotes, hexify)
table.print (root, name, reduce, noquotes, hexify)
table.tofile (filename, root, name, reduce, noquotes, hexify)
table.tohandle (handle, root, name, reduce, noquotes, hexify)

The serialization can be controlled in several ways. Often only the first two options makes
sense:

table.serialize({ a = 2 })

t={ ["a"]=2, }

54 Lua Functions

preliminary, uncorrected version – November 26, 2010

table.serialize({ a = 2 }, "name")

name={ ["a"]=2, }

table.serialize({ a = 2 }, true)

return { ["a"]=2, }

table.serialize({ a = 2 }, false)

{ ["a"]=2, }

table.serialize({ a = 2 }, "return")

return { ["a"]=2, }

table.serialize({ a = 2 }, 12)

[12]={ ["a"]=2, }

table.serialize({ a = 2, [3] = "b", [true] = "6" }, nil, true)

t={ [3]="b", ["a"]=2, [true]=6, }

table.serialize({ a = 2, [3] = "b", [true] = "6" }, nil, true, true)

t={ [3]="b", a=2, [true]=6, }

table.serialize({ a = 2, [3] = "b", [true] = "6" }, nil, true, true, true)

t={ [0x0003]="b", a=0x0002, [true]=6, }

In ConTEXt there is also a tocontext function that typesets the table verbose. This is handy
for manuals and tracing.

identical are_equal

These two function compare two tables that have a similar structure. The identical variant
operates on a hash while are_equal assumes an indexed table.

local b = table.identical (one, two)
local b = table.are_equal (one, two)

table.identical({ a = { x = 2 } }, { a = { x = 3 } })

false

table.identical({ a = { x = 2 } }, { a = { x = 2 } })

true

Lua Functions 55

preliminary, uncorrected version – November 26, 2010

table.are_equal({ a = { x = 2 } }, { a = { x = 3 } })

true

table.are_equal({ a = { x = 2 } }, { a = { x = 2 } })

true

table.identical({ "one", "two" }, { "one", "two" })

true

table.identical({ "one", "two" }, { "two", "one" })

false

table.are_equal({ "one", "two" }, { "one", "two" })

true

table.are_equal({ "one", "two" }, { "two", "one" })

false

tohash fromhash swapped swaphash reverse

We use tohash quite a lot in ConTEXt. It converts a list into a hash so that we can easily check
if (a string) is in a given set. The fromhash function does the opposite: it creates a list of keys
from a hashed table where each value that is not false or nil is present.

local hashed = table.tohash (indexed)
local indexed = table.fromhash(hashed)

The function swapped turns keys into values and reverse while the reverse function re-
verses the values in an indexed table.

local swapped = table.swapped (indexed)
local reversed = table.reversed (indexed)

table.tohash({ "a", "b", "c" })

t={ ["a"]=true, ["b"]=true, ["c"]=true, }

table.fromhash({ a = true, b = false, c = true })

t={ "a", "c", }

table.swapped({ "a", "b", "c" })

t={ ["a"]=1, ["b"]=2, ["c"]=3, }

56 Lua Functions

preliminary, uncorrected version – November 26, 2010

table.reversed({ "a", "b", "c" })

t={ "c", "b", "a", }

append prepend

These two functions operate on a pair of indexed tables. The first table gets appended or
prepended by the second. The first table is returned as well.

table.append (one, two)
table.prepend(one, two)

The functions are similar to loops using insert.

table.append({ "a", "b", "c" }, { "d", "e" })

t={ "a", "b", "c", "d", "e", }

table.prepend({ "a", "b", "c" }, { "d", "e" })

t={ "d", "e", "a", "b", "c", }

merge merged imerge imerged

You can merge multiple hashes with merge and indexed tables with imerge. The first table
is the target and is returned.

table.merge (one, two, ...)
table.imerge (one, two, ...)

The variants ending with a d merge the given list of tables and return the result leaving the
first argument untouched.

local merged = table.merged (one, two, ...)
local merged = table.imerged (one, two, ...)

table.merge({ a = 1, b = 2, c = 3 }, { d = 1 }, { a = 0 })

t={ ["a"]=0, ["b"]=2, ["c"]=3, ["d"]=1, }

table.imerge({ "a", "b", "c" }, { "d", "e" }, { "f", "g" })

t={ "a", "b", "c", "d", "e", "f", "g", }

copy fastcopy

When copying a table we need to make a real and deep copy. The copy function is an adapted
version from the Lua wiki. The fastopy is faster because it does not check for circular ref-
erences and does not share tables when possible. In practice using the fast variant is okay.

Lua Functions 57

preliminary, uncorrected version – November 26, 2010

local copy = table.copy (t)
local copy = table.fastcopy(t)

flattened

A nested table can be unnested using flattened. Normally you will only use this function
if the content is somewhat predictable. Often using one of the merge functions does a similar
job.

local flattened = table.flatten(t)

table.flattened({ a =1, b = 2, { c = 3 }, d = 4})

t={ ["a"]=1, ["b"]=2, ["c"]=3, ["d"]=4, }

table.flattened({ 1, 2, { 3, { 4 } }, 5})

t={ 1, 2, 3, 4, 5, }

table.flattened({ 1, 2, { 3, { 4 } }, 5}, 1)

t={ 1, 2, 3, { 4 }, 5, }

table.flattened({ a = 1, b = 2, { c = 3 }, d = 4})

t={ ["a"]=1, ["b"]=2, ["c"]=3, ["d"]=4, }

table.flattened({ 1, 2, { 3, { c = 4 } }, 5})

t={ 1, 2, 3, 5, ["c"]=4, }

table.flattened({ 1, 2, { 3, { c = 4 } }, 5}, 1)

t={ 1, 2, 3, { ["c"]=4, }, 5, }

contains

This function works with indexed tables. Watch out, when you look for a match, the number
1 is not the same as string "1". The function returns the index or false.

if table.contains(t, 5) then ... else ... end
if table.contains(t,"5") then ... else ... end

table.contains({ "a", 2, true, "1"}, 1)

false

table.contains({ "a", 2, true, "1"}, "1")

4

58 Lua Functions

preliminary, uncorrected version – November 26, 2010

count

The name speaks for itself: this function counts the number of entries in the given table. For
an indexed table #t is faster.

local n = table.count(t)

table.count({ 1, 2, [4] = 4, a = "a" })

4

sequenced

Normally, when you trace a table, printing the serialized version is quite convenient. How-
ever, when it concerns a simple table, a more compact variant is:

print(table.sequenced(t, separator))

table.sequenced({ 1, 2, 3, 4})

1=1 | 2=2 | 3=3 | 4=4

table.sequenced({ 1, 2, [4] = 4, a = "a" }, ", ")

1=1, 2=2, 4=4, a=a

8.3 Math
In addition to the built-in math function we provide: round, div, mod, sind, cosd and tand.

8.4 Booleans

tonumber

This function returns the number one or zero. You will seldom need this function.

local state = boolean.tonumber(str)

boolean.tonumber(true)

1

toboolean

When dealing with configuration files or tables a bit flexibility in setting a state makes sense,
if only because in some cases it's better to say yes than true.

Lua Functions 59

preliminary, uncorrected version – November 26, 2010

local b = toboolean(str)
local b = toboolean(str,tolerant)

When the second argument is true, the strings true, yes, on, 1, t and the number 1 all turn
into true. Otherwise only true is honoured. This function is also defined in the global
namespace.

string.toboolean("true")

true

string.toboolean("yes")

yes

string.toboolean("yes",true)

true

is_boolean

This function is somewhat similar to the previous one. It interprets the strings true, yes,
on and t as true and false, no, off and f as false. Otherwise nil is returned, unless a
default value is given, in which case that is returned.

if is_boolean(str) then ... end
if is_boolean(str,default) then ... end

string.is_boolean("true")

true

string.is_boolean("off")

false

string.is_boolean("crap",true)

true

8.5 Strings
Lua strings are simply sequences of bytes. Of course in some places special treatment takes
place. For instance \n expands to one or more characters representing a newline, depending
on the operating system, but normally, as long as you manipulate strings in the perspective
of LuaTEX, you don't need to worry about such issues too much. As LuaTEX is a utf-8 engine,
strings normally are in that encoding but again, it does not matter much. First of all we
have the unicode library linked into LuaTEX, but most of all, Lua is quite agnostic about the
content of strings: it does not care about three characters reflecting one Unicode character or

60 Lua Functions

preliminary, uncorrected version – November 26, 2010

not. This means that when you use for instance the functions discussed here, or use libraries
like lpeg behave as you expect.

[lua] sub

You cannot directly access a character in a string but you can take any slice you want using
sub. You need to provide a start position and negative values will count backwards from the
end.

local slice = string.sub(str,first,last)

string.sub("abcdef",2)

bcdef

string.sub("abcdef",2,3)

bc

string.sub("abcdef",-3,-2)

de

[lua] gsub

There are two ways of analyzing the content of a string. The more modern and flexible ap-
proach is to use lpeg. The other one uses some functions in the string namespace that
accept so called patterns for matching. While lpeg is more powerfull than regular expres-
sions, the pattern matching is less powerfull but sometimes faster and also easier to specify.
In many cases it can do the job quite well.

local new, count = string.gsub(old,pattern,replacement)

The replacement can be a function. Often you don't want the number of matches, and the
way to avoid this is either to store the result in a variable:

local new = string.gsub(old,"lua","LUA")
print(new)

or to use parentheses to signal the interpreter that only one value is return.

print((string.gsub(old,"lua","LUA"))

Patterns can be more complex so you'd better read the Lua manual if you want to know more
about them.

string.gsub("abcdef","b","B")

aBcdef

Lua Functions 61

preliminary, uncorrected version – November 26, 2010

string.gsub("abcdef","[bc]",string.upper)

aBCdef

[lua] find

The find function returns the first and last position of the match:

local first, last = find(str,pattern)

If you're only interested if there is a match at all, it's enough to know that there is a first
position. No match returns nil. So,

if find("luatex","tex") then ... end

works out okay. You can pass an extra argument to find that indicates the start position.
So you can use this function to loop over all matches: just start again at the end of the last
match.

[lua] match gmatch

With match you can split of bits and pieces of a string. The parenthesis indicate the captures.

local a, b, c, ... = string.match(str,pattern)

The gmatch function is used to loop over a string, for instance the following code prints the
elements in a comma separated list, ignoring spaces after commas.

for s in string.gmatch(str,"([^,%s])+") do
print(s)

end

string.match("before:after","^(.-):")

before

[lua] lower upper

These two function spreak for themselves.

string.lower("LOW")

low

string.upper("upper")

UPPER

62 Lua Functions

preliminary, uncorrected version – November 26, 2010

[lua] format

The format function takes a template as first argument and one or more additional argu-
ments depending on the format. The template is similar to the one used in c but it has some
extensions.

local s = format(format, str, ...)

string.format("U+%05X",2010)

U+007DA

[luatex] utfvalues utfcharacters

There are a couple of extra functions implemented in LuaTEX that deal with utf. The fol-
lowing function loops over the utf characters in a string and returns the Unicode number in
u:

for u in utf.utfvalues(str) do
... -- u is a number

end

The next one returns a string c that has one or more characters as utf characters can have
upto 4 bytes.

for c in utf.utfcharacters(str) do
... -- c is a string

end

strip

This function removes any leading and trailing whitespace characters.

local s = string.strip(str)

string.strip(" lua + tex = luatex ")

lua + tex = luatex

split splitlines checkedsplit

The line splitter is a special case of the generic splitter. The split function can get a string
as well an lpeg pattern. The checkedsplit function removes empty substrings.

local t = string.split (str, pattern)
local t = string.split (str, lpeg)
local t = string.checkedsplit (str, lpeg)
local t = string.splitlines (str)

Lua Functions 63

preliminary, uncorrected version – November 26, 2010

string.split("a, b,c, d", ",")

t={ "a", " b", "c", " d", }

string.split("p.q,r", lpeg.S(",."))

t={ "p", "q", "r", }

string.checkedsplit(";one;;two", ";")

t={ "one", "two", }

string.splitlines("lua\ntex nic")

t={ "lua", "tex nic", }

quoted unquoted

You will hardly need these functions. The quoted function can normally be avoided using
the format pattern %q. The unquoted function removes single or double quotes but only
when the string starts and ends with the same quote.

local q = string.quoted (str)
local u = string.unquoted(str)

string.quoted([[test]])

"test"

string.quoted([[test"test]])

"test\"test"

string.unquoted([["test]])

"test

string.unquoted([["t\"est"]])

t\"est

string.unquoted([["t\"est"x]])

"t\"est"x

string.unquoted("\'test\'")

test

64 Lua Functions

preliminary, uncorrected version – November 26, 2010

count

The function count returns the number of times that a given pattern occurs. Beware: if you
want to deal with utf strings, you need the variant that sits in the lpeg namespace.

local n = count(str,pattern)

string.count("test me", "e")

2

limit

This function can be handy when you need to print messages that can be rather long. By
default, three periods are appended when the string is chopped.

print(limit(str,max,sentinel)

string.limit("too long", 4)

...

string.limit("too long", 4, " (etc)")

too lon (etc)

is_empty

A string considered empty by this function when its length is zero or when it only contains
spaces.

if is_empty(str) then ... end

string.is_empty("")

true

string.is_empty(" ")

true

string.is_empty(" ? ")

false

escapedpattern topattern

These two functions are rather specialized. They come in handy when you need to escape a
pattern, i.e. prefix characters with a special meaning by a %.

Lua Functions 65

preliminary, uncorrected version – November 26, 2010

local e = escapedpattern(str, simple)
local p = topattern (str, lowercase, strict)

The simple variant does less escaping (only -.?* and is for instance used in wildcard patterns
when globbing directories. The topattern function always does the simple escape. A strict
pattern gets anchored to the beginning and end. If you want to see what these functions do
you can best look at their implementation.

8.6 Numbers
This library is under construction and will be replaced when we have the bit library.

8.7 Lpegs
For LuaTEX and ConTEXt MkIV the lpeg library came at the right moment as we can use it in
lots of places. An in-depth discussion makes no sense as it's easier to look into l-lpeg.lua,
so we stick to an overview.2 Most function return an lpeg object that can be used in a match.
In time critical situations it's more efficient to use the match on a predefined pattern that to
create the pattern new each time. Patterns are cached so there is no penalty in predefining
a pattern. So, in the following example, the splitter that splits at the asterisk will only be
created once.

local splitter_1 = lpeg.splitat("*")
local splitter_2 = lpeg.splitat("*")

local n, m = lpeg.match(splitter_1,"2*4")
local n, m = lpeg.match(splitter_2,"2*4")

[lua] match print P R S V C Cc Cs ...

The match function does the real work. Its first argument is a lpeg object that is created
using the functions with the short uppercase names.

local P, R, C, Ct = lpeg.P, lpeg.R, lpeg.C, lpeg.Ct

local pattern = Ct((P("[") * C(R("az")^0) * P(']') + P(1))^0)

local words = lpeg.match(pattern,"a [first] and [second] word")

In this example the words between square brackets are collected in a table. There are lots of
examples of lpeg in the ConTEXt code base.

anywhere

local p = anywhere(pattern)

2 If you search the web for lua lpeg you will end up at the official documentation and tutorial.

66 Lua Functions

preliminary, uncorrected version – November 26, 2010

lpeg.match(lpeg.Ct((lpeg.anywhere("->")/"!")^0), "oeps->what->more")

t={ "!", "!", }

splitter splitat firstofsplit secondofsplit

The splitter function returns a pattern where each match gets an action applied. The
action can be a function, table or string.

local p = splitter(pattern, action)

The splitat function returns a pattern that will return the split off parts. Unless the second
argument is true the splitter keeps splitting

local p = splitat(separator,single)

When you need to split off a prefix (for instance in a label) you can use:

local p = firstofsplit(separator)
local p = secondofsplit(separator)

The first function returns the original when there is no match but the second function returns
nil instead.

lpeg.match(lpeg.Ct(lpeg.splitat("->",false)), "oeps->what->more")

t={ "oeps", "what", "more", }

lpeg.match(lpeg.Ct(lpeg.splitat("->",false)), "oeps")

t={ "oeps", }

lpeg.match(lpeg.Ct(lpeg.splitat("->",true)), "oeps->what->more")

t={ "oeps", "what->more", }

lpeg.match(lpeg.Ct(lpeg.splitat("->",true)), "oeps")

t={ "oeps", }

lpeg.match(lpeg.firstofsplit(":"), "before:after")

before

lpeg.match(lpeg.firstofsplit(":"), "whatever")

whatever

lpeg.match(lpeg.secondofsplit(":"), "before:after")

after

Lua Functions 67

preliminary, uncorrected version – November 26, 2010

lpeg.match(lpeg.secondofsplit(":"), "whatever")

nil

split checkedsplit

The next two functions have counterparts in the string namespace. They return a table with
the split parts. The second function omits empty parts.

local t = split (separator,str)
local t = checkedsplit(separator,str)

lpeg.split(",","a,b,c")

t={ "a", "b", "c", }

lpeg.split(",",",a,,b,c,")

t={ "", "a", "", "b", "c", "", }

lpeg.checkedsplit(",",",a,,b,c,")

t={ "a", "b", "c", }

stripper keeper replacer

These three functions return patterns that manipulate a string. The replacer gets a map-
ping table passed.

local p = stripper(str or pattern)
local p = keeper (str or pattern)
local p = replacer(mapping)

lpeg.match(lpeg.stripper(lpeg.R("az")), "[-a-b-c-d-]")

[-----]

lpeg.match(lpeg.stripper("ab"), "[-a-b-c-d-]")

[---c-d-]

lpeg.match(lpeg.keeper(lpeg.R("az")), "[-a-b-c-d-]")

abcd

lpeg.match(lpeg.keeper("ab"), "[-a-b-c-d-]")

ab

68 Lua Functions

preliminary, uncorrected version – November 26, 2010

lpeg.match(lpeg.replacer{{"a","p"},{"b","q"}}, "[-a-b-c-d-]")

[-p-q-c-d-]

balancer

One of the nice things about lpeg is that it can handle all kind of balanced input. So, a
function is provided that returns a balancer pattern:

local p = balancer(left,right)

lpeg.match(lpeg.Ct((lpeg.C(lpeg.balancer("{","}"))+1)^0),"{a} {b{c}}")

t={ "{a}", "{b{c}}", }

lpeg.match(lpeg.Ct((lpeg.C(lpeg.balancer("((","]"))+1)^0),"((a] ((b((c]]")

t={ "((a]", "((b((c]]", }

counter count

The counter function returns a function that returns the length of a given string. The count
function differs from its counterpart living in the string namespace in that it deals with utf
and accepts strings as well as patterns.

local fnc = counter(pattern)
local len = count(str,what)

lpeg.count("äáàa","ä")

1

lpeg.count("äáàa",lpeg.P("á") + lpeg.P("à"))

2

UP US UR

In order to make working with utf-8 input somewhat more convenient a few helpers are
provided.

local p = lpeg.UP(utfstring)
local p = lpeg.US(utfstring)
local p = lpeg.UR(utfpair)
local p = lpeg.UR(first,last)

lpeg.count("äáàa",lpeg.UP("áà"))

1

Lua Functions 69

preliminary, uncorrected version – November 26, 2010

lpeg.count("äáàa",lpeg.US("àá"))

2

lpeg.count("äáàa",lpeg.UR("aá"))

4

lpeg.count("äáàa",lpeg.UR("àá"))

2

lpeg.count("äáàa",lpeg.UR(0x0000,0xFFFF))

4

patterns

The following patterns are available in the patterns table in the lpeg namespace:

HEX alwaysmatched anything balanced beginline beginofstring cardinal
cfloat chartonumber cnumber colon comma commaspacer digit dimenpair
dquote emptyline endofstring eol equal escaped float hex hexadecimal
integer letter linesplitter lowercase nested newline nodquote nonspacer
nonwhitespace nosquote number oct octal period semicolon sign somecontent
space spaceortab spacer squote stripzeros tab textline underscore undouble
unquoted unsingle unspacer uppercase urlescaper urlsplitter utf8 utf8byte
utf8char utf8four utf8one utf8three utf8two utfbom utflinesplitter utftype
validutf8 validutf8char whitespace xml

There will probably be more of them in the future.

8.8 IO
The io library is extended with a couple of functions as well and variables but first we men-
tion a few predefined functions.

[lua] open popen...

The IO library deals with in- and output from the console and files.

local f = io.open(filename)

When the call succeeds f is a file object. You close this file with:

f:close()

Reading from a file is done with f:read(...) and writing to a file with f:write(...). In
order to write to a file, when opening a second argument has to be given, often wb for writing

70 Lua Functions

preliminary, uncorrected version – November 26, 2010

(binary) data. Although there are more efficient ways, you can use the f:lines() iterator
to process a file line by line.

You can open a process with io.popen but dealing with this one depends a bit on the oper-
ating system.

fileseparator pathseparator

The value of the following two strings depends on the operating system that is used.

io.fileseparator
io.pathseparator

io.fileseparator

\

io.pathseparator

;

loaddata savedata

These two functions save you some programming. The first function loads a whole file in a
string. By default the file is loaded in binary mode, but when the second argument is true,
some interpretation takes place (for instance line endings). In practice the second argument
can best be left alone.

io.loaddata(filename,textmode)

Saving the data is done with:

io.savedata(filename,str)
io.savedata(filename,tab,joiner)

When a table is given, you can optionally specify a string that ends up between the elements
that make the table.

exists size noflines

These three function don't need much comment.

io.exists(filename)
io.size(filename)
io.noflines(fileobject)
io.noflines(filename)

Lua Functions 71

preliminary, uncorrected version – November 26, 2010

characters bytes readnumber readstring

When I wrote the icc profile loader, I needed a few helpers for reading strings of a certain
length and numbers of a given width. Both accept five values of n: -4, -2, 1, 2 and 4 where
the negative values swap the characters or bytes.

io.characters(f,n) --
io.bytes(f,n)

The function readnumber accepts five sizes: 1, 2, 4, 8, 12. The string function handles any
size and strings zero bytes from the string.

io.readnumber(f,size)
io.readstring(f,size)

Optionally you can give the position where the reading has to start:

io.readnumber(f,position,size)
io.readstring(f,position,size)

ask

In practice you will probably make your own variant of the following function, but at least a
template is there:

io.ask(question,default,options)

For example:

local answer = io.ask("choice", "two", { "one", "two" })

8.9 File
The file library is one of the larger core libraries that comes with ConTEXt.

dirname basename extname nameonly

We start with a few filename manipulators.

local path = file.dirname(name,default)
local base = file.basename(name)
local suffix = file.extname(name,default) -- or file.suffix
local name = file.nameonly(name)

file.dirname("/data/temp/whatever.cld")

/data/temp

72 Lua Functions

preliminary, uncorrected version – November 26, 2010

file.dirname("c:/data/temp/whatever.cld")

c:/data/temp

file.basename("/data/temp/whatever.cld")

whatever.cld

file.extname("c:/data/temp/whatever.cld")

cld

file.nameonly("/data/temp/whatever.cld")

whatever

addsuffix replacesuffix

These functions are used quite often:

local filename = file.addsuffix(filename, suffix, criterium)
local filename = file.replacesuffix(filename, suffix)

The first one adds a suffix unless one is present. When criterium is true no checking is
done and the suffix is always appended. The second function replaces the current suffix or
add one when there is none.

file.addsuffix("whatever","cld")

whatever.cld

file.addsuffix("whatever.tex","cld")

whatever.tex

file.addsuffix("whatever.tex","cld",true)

whatever.tex.cld

file.replacesuffix("whatever","cld")

whatever.cld

file.replacesuffix("whatever.tex","cld")

whatever.cld

is_writable is_readable

These two test the nature of a file:

file.is_writable(name)

Lua Functions 73

preliminary, uncorrected version – November 26, 2010

file.is_readable(name)

splitname join collapsepath

Instead of splitting off individual components you can get them all in one go:

local drive, path, base, suffix = file.splitname(name)

The drive variable is empty on operating systems other than MS Windows. Such compo-
nents are joined with the function:

file.join(...)

The given snippets are joined using the / as this is rather platform independent. Some check-
ing takes place in order to make sure that nu funny paths result from this. There is also
collapsepath that does some cleanup on a path with relative components, like ...

file.splitname("a:/b/c/d.e")

a /b/c/ d e

file.join("a","b","c.d")

a/b/c.d

file.collapsepath("a/b/../c.d")

a/c.d

file.collapsepath("a/b/../c.d",true)

e:/context/manuals/cld-mkiv/a/c.d

splitpath joinpath

By default splitting a execution path specification is done using the operating system depen-
dant separator, but you can force one as well:

file.splitpath(str,separator)

The reverse operation is done with:

file.joinpath(tab,separator)

Beware: in the following examples the separator is system dependent so the outcome de-
pends on the platform you run on.

file.splitpath("a:b:c")

t={ "a:b:c", }

74 Lua Functions

preliminary, uncorrected version – November 26, 2010

file.splitpath("a;b;c")

t={ "a", "b", "c", }

file.joinpath({"a","b","c"})

a;b;c

robustname

In workflows filenames with special characters can be a pain so the following function re-
places characters other than letters, digits, periods, slashes and hyphens by hyphens.

file.robustname(str,strict)

file.robustname("We don't like this!")

We-don-t-like-this-

file.robustname("We don't like this!",true)

we-don-t-like-this

readdata writedata

These two functions are duplicates of functions with the same name in the io library.

copy

There is not much to comment on this one:

file.copy(oldname,newname)

is_qualified_path is_rootbased_path

A qualified path has at least one directory component while a rootbased path is anchored to
the root of a filesystem or drive.

file.is_qualified_path(filename)
file.is_rootbased_path(filename)

file.is_qualified_path("a")

false

file.is_qualified_path("a/b")

true

Lua Functions 75

preliminary, uncorrected version – November 26, 2010

file.is_rootbased_path("a/b")

false

file.is_rootbased_path("/a/b")

true

8.10 Dir
The dir library uses functions of the lfs library that is linked into LuaTEX.

current

This returns the current directory:

dir.current()

glob globpattern globfiles

The glob function collects files with names that match a given pattern. The pattern can have
wildcards: * (oen of more characters), ? (one character) or ** (one or more directories). You
can pass the function a string or a table with strings. Optionally a second argument can be
passed, a table that the results are appended to.

local files = dir.glob(pattern,target)
local files = dir.glob({pattern,...},target)

The target is optional and often you end up with simple calls like:

local files = dir.glob("*.tex")

There is a more extensive version where you start at a path, and applies an action to each file
that matches the pattern. You can either or not force recursion.

dir.globpattern(path,patt,recurse,action)

The globfiles function collects matches in a table that is returned at the end. You can
pass an existing table as last argument. The first argument is the starting path, the second
arguments controls analyzing directories and the third argument has to be a function that
gets a name passed and is supposed to return true or false. This function determines what
gets collected.

dir.globfiles(path,recurse,func,files)

makedirs

With makedirs you can create the given directory. If more than one name is given they are
concatinated.

76 Lua Functions

preliminary, uncorrected version – November 26, 2010

dir.makedirs(name,...)

expandname

This function tries to resolve the given path, including relative paths.

dir.expandname(str)

dir.expandname(".")

e:/context/manuals/cld-mkiv

8.11 URL

split hashed construct

This is a specialized library. You can split an url into its components. An url is constructed
like this:

foo://example.com:2010/alpha/beta?gamma=delta#epsilon

scheme foo://
authority example.com:2010
path /alpha/beta
query gamma=delta
fragment epsilon

A string is split into a hash table with these keys using the following function:

url.hashed(str)

or in strings with:

url.split(str)

The hash variant is more tolerant than the split. In the hash there is also a key original that
holds the original url and and the boolean noscheme indicates if there is a scheme at all.

The reverse operation is done with:

url.construct(hash)

url.hashed("foo://example.com:2010/alpha/beta?gamma=delta#epsilon")

t={ ["authority"]="example.com:2010", ["fragment"]="epsilon", ["noscheme"]=false,
["original"]="foo://example.com:2010/alpha/beta?gamma=delta#epsilon", ["path"]="alpha/beta",
["query"]="gamma=delta", ["scheme"]="foo", }

Lua Functions 77

preliminary, uncorrected version – November 26, 2010

url.hashed("alpha/beta")

t={ ["authority"]="", ["fragment"]="", ["noscheme"]=true, ["original"]="alpha/beta",
["path"]="alpha/beta", ["query"]="", ["scheme"]="file", }

url.split("foo://example.com:2010/alpha/beta?gamma=delta#epsilon")

t={ "foo", "example.com:2010", "alpha/beta", "gamma=delta", "epsilon",
}

url.split("alpha/beta")

t={ "", "", "", "", "", }

hasscheme addscheme filename query

There are a couple of helpers and their names speaks for themselves:

url.hasscheme(str)
url.addscheme(str,scheme)
url.filename(filename)
url.query(str)

url.hasscheme("http://www.pragma-ade.com/cow.png")

true

url.hasscheme("www.pragma-ade.com/cow.png")

false

url.addscheme("www.pragma-ade.com/cow.png","http://")

http://www.pragma-ade.com/cow.png

url.addscheme("www.pragma-ade.com/cow.png")

file:///www.pragma-ade.com/cow.png

url.filename("http://www.pragma-ade.com/cow.png")

http://www.pragma-ade.com/cow.png

url.query("a=b&c=d")

t={ ["a"]="b", ["c"]="d", }

78 Lua Functions

preliminary, uncorrected version – November 26, 2010

8.12 OS

[lua luatex] env setenv getenv

In ConTEXt normally you will use the resolver functions to deal with the environment and
files. However, a more low level interface is still available. You can query and set envi-
ronment variables with two functions. In addition there is the env table as interface to the
environment. This threesome replaces the built in functions.

os.setenv(key,value)
os.getenv(key)
os.env[key]

[lua] execute

There are several functions for running programs. One comes directly from Lua, the otheres
come with LuaTEX. All of them are are overloaded in ConTEXt in order to get more control.

os.execute(...)

[luatex] spawn exec

Two other runners are:

os.spawn(...)
os.exec (...)

The exec variant will transfer control from the current process to the new one and not return
to the current job. There is a more detailed explanation in the LuaTEX manual.

resultof launch

The following function runs the command and returns the result as string. Multiple lines are
combined.

os.resultof(command)

The next one launches a file assuming that the operating system knows what application to
use.

os.launch(str)

type name platform libsuffix binsuffix

There are a couple of strings that reflect the current machinery: type returns either windows
or unix. The variable name is more detailed: windows, msdos, linux, macosx, etc. If you
also want the architecture you can consult platform.

Lua Functions 79

preliminary, uncorrected version – November 26, 2010

local t = os.type
local n = os.name
local p = os.platform

These three variables as well as the next two are used internally and normally they are not
needed in your applications as most functions that matter are aware of what platform specific
things they have to deal with.

local s = os.libsuffix
local b = os.binsuffix

These are string, not functions.

os.type

windows

os.name

windows

os.platform

mswin

os.libsuffix

dll

os.binsuffix

exe

[lua] time

The built in time function returns a number. The accuracy is implementation dependent and
not that large.

os.time()

1290802571

[luatex] times gettimeofday

Although Lua has a built in type os.time function, we normally will use the one provided by
LuaTEX as it is more precise:

os.gettimeofday()

There is also a more extensive variant:

80 Lua Functions

preliminary, uncorrected version – November 26, 2010

os.times()

This one is platform dependent and returns a table with utime (use time), stime (system
time), cutime (children user time), and cstime (children system time).

os.gettimeofday()

1290802571.1707

os.times()

t={ ["cstime"]=0, ["cutime"]=0, ["stime"]=0, ["utime"]=1290802571.1863,
}

runtime

More interesting is:

os.runtime()

which returns the time spent in the application so far.

os.runtime()

6.0528111457825

Sometimes you need to add the timezone to a verbose time and the following function does
that for you.

os.timezone(delta)

os.timezone()

1

os.timezone(1)

+01:00

os.timezone(-1)

+01:00

uuid

A version 4 UUID can be generated with:

os.uuid()

The generator is good enough for our purpose.

Lua Functions 81

preliminary, uncorrected version – November 26, 2010

os.uuid()

ffd54133-4dad-a1b0-0cc7-474d99198d01

8.13 A few suggestions
You can wrap all kind of functionality in functions but sometimes it makes no sense to add
the overhead of a call as the same can be done with hardly any code.

If you want a slice of a table, you can copy the range needed to a new table. A simple version
with no bounds checking is:

local new = { } for i=a,b do new[#new+1] = old[i] end

Another, much faster, variant is the following.

local new = { unpack(old,a,b) }

You can use this variant for slices that are not extremely large. The function table.sub is
an equivalent:

local new = table.sub(old,a,b)

An indexed table is empty when its size equals zero:

if #indexed == 0 then ... else ... end

Sometimes this is better:

if indexed and #indexed == 0 then ... else ... end

So how do we test if a hashed table is empty? We can use the next function as in:

if hashed and next(indexed) then ... else ... end

Say that we have the following table:

local t = { a=1, b=2, c=3 }

The call next(t) returns the first key and value:

local k, v = next(t) -- "a", 1

The second argument to next can be a key in which case the following key and value in the
hash table is returned. The result is not predictable as a hash is unordered. The generic for
loop uses this to loop over a hashed table:

for k, v in next, t do
...

end

82 Lua Functions

preliminary, uncorrected version – November 26, 2010

Anyway, when next(t) returns zero you can be sure that the table is empty. This is how
you can test for exactly one entry:

if t and not next(t,next(t)) then ... else ... end

Here it starts making sense to wrap it into a function.

function table.has_one_entry(t)
t and not next(t,next(t))

end

On the other hand, this is not that usefull, unless you can spent the runtime on it:

function table.is_empty(t)
return not t or not next(t)

end

The Lua interface code 83

preliminary, uncorrected version – November 26, 2010

9 The Lua interface code

9.1 Introduction
There is a lot of Lua code in MkIV. Much is not exposed and a lot of what is exposed is not
meant to be used directly at the Lua end. But there is also functionality and data that can be
accessed without side effects. This chapter only discussed what makes sense.

In the following sections a subset of the built in functionality is discussed. There are often
more functions alongside those presented but they might change or disappear. So, if you use
undocumented features, be sure to tag them somehow in your source code so that you can
check them out when there is an update. Best would be to have more functionality defined
local so that it is sort of hidden but that would be unpractical as for instance functions are
often used in other modules and or have to be available at the TEX end.

It might be tempting to add your own functions to namespaces created by ConTEXt or maybe
overload some existing ones. Don't do this. First of all, there is no guarantee that your code
will not interfere, nor that it overloads future functionality. Just use your own namespace.
Also, future versions of ConTEXt might have a couple of protection mechanisms built in.
Without doubt the following sections will be extended as soon as interfaces become more
stable.

9.2 Characters
There are quite some data tables defined but the largest is the character database. You can
consult this table any time you want but you're not supposed to add or change its content.
Future versions may carry more information. The table can be accessed using an unicode
number. A relative simple entry looks as follows:

characters.data[0x00C1]

{ adobename="Aacute", category="lu", contextname="Aacute", description="LATIN
CAPITAL LETTER A WITH ACUTE", direction="l", lccode=0x00E1, linebreak="al",
shcode=0x0041, specials={ "char", 0x0041, 0x0301 }, unicodeslot=0x00C1,
}

Much of this is rather common information but some of it is specific for use with ConTEXt.
Some characters have even more information, for instance those that deal with mathematics:

characters.data[0x2190]

{ adobename="arrowleft", category="sm", cjkwd="a", description="LEFTWARDS
ARROW", direction="on", linebreak="ai", mathspec={ { class="relation",
name="leftarrow", }, { class="relation", name="gets", }, {
class="under", name="underleftarrow", }, { class="over", name="overleftarrow",
}, }, mathstretch="h", unicodeslot=0x2190, }

84 The Lua interface code

preliminary, uncorrected version – November 26, 2010

Not all characters have a real entry. For instance most cjk characters are virtual and share the
same data:

characters.data[0x3456]

{ category="lo", cjkwd="w", description="<CJK Ideograph Extension A>",
direction="l", linebreak="id", range={ first=0x3400, last=0x4DB5, },
}

You can also access the table using utf characters:

characters.data["ä"]

{ ["adobename"]="adieresis", ["category"]="ll", ["contextname"]="adiaeresis",
["description"]="LATIN SMALL LETTER A WITH DIAERESIS", ["direction"]="l",
["linebreak"]="al", ["shcode"]=97, ["specials"]={ "char", 97, 776 }, ["uccode"]=196,
["unicodeslot"]=228, }

A more verbose string access is also supported:

characters.data["U+0070"]

{ adobename="p", category="ll", cjkwd="na", description="LATIN SMALL
LETTER P", direction="l", linebreak="al", mathclass="variable", uccode=0x0050,
unicodeslot=0x0070, }

Another (less usefull) table contains information about ranges in this character table. You can
access this table using rather verbose names, or you can use collapsed lowercase variants.

characters.blocks["CJK Compatibility Ideographs"]

{ 0xF900, 0xFAFF, "CJK Compatibility Ideographs", }

characters.blocks["hebrew"]

{ 0x0590, 0x05FF, "Hebrew", }

characters.blocks["combiningdiacriticalmarks"]

{ 0x0300, 0x036F, "Combining Diacritical Marks", }

Some fields can be accessed using functions. This can be handy when you need that infor-
mation for tracing purposes or overviews. There is some overhead in the function call, but
you get some extra testing for free. You can use characters as well as numbers as index.

characters.contextname("ä")

adiaeresis

characters.adobename(228)

adieresis

The Lua interface code 85

preliminary, uncorrected version – November 26, 2010

characters.description("ä")

LATIN SMALL LETTER A WITH DIAERESIS

The category is normally a two character tag, but you can also ask for a more verbose variant:

characters.category(228)

ll

characters.category(228,true)

Letter Lowercase

The more verbose category tags are available in a table:

characters.categorytags["lu"]

Letter Uppercase

There are several fields in a character entry that help us to remap a character. The lccode
indicates the lowercase code point and the uccode to the uppercase code point. The shcode
refers to one or more characters that have a similar shape.

characters.shape ("ä")

97

characters.uccode("ä")

196

characters.lccode("ä")

ä

characters.shape (100)

100

characters.uccode(100)

68

characters.lccode(100)

100

You can use these function or access these fields directly in an entry, but we also provide a
few virtual tables that avoid accessing the whole entry. This method is rather efficient.

characters.lccodes["ä"]

228

86 The Lua interface code

preliminary, uncorrected version – November 26, 2010

characters.uccodes["ä"]

196

characters.shcodes["ä"]

97

characters.lcchars["ä"]

ä

characters.ucchars["ä"]

Ä

characters.shchars["ä"]

a

As with other tables, you can use a number instead of an utf character. Watch how we get a
table for multiple shape codes but a string for multiple shape characters.

characters.lcchars[0x00C6]

æ

characters.ucchars[0x00C6]

Æ

characters.shchars[0x00C6]

AE

characters.shcodes[0x00C6]

{ 65, 69, }

These codes are used when we manipulate strings. Although there are upper and lower
functions in the string namespace, the following ones are the real ones to be used in critical
situations.

characters.lower("ÀÁÂÃÄÅàáâãäå")

àáâãäåàáâãäå

characters.upper("ÀÁÂÃÄÅàáâãäå")

ÀÁÂÃÄÅÀÁÂÃÄÅ

characters.shaped("ÀÁÂÃÄÅàáâãäå")

AAAAAAaaaaaa

The Lua interface code 87

preliminary, uncorrected version – November 26, 2010

A rather special one is the following:

characters.lettered("Only 123 letters + count!")

Onlyletterscount

With the second argument is true, spaces are kept and collapsed. Leading and trailing spaces
are stripped.

characters.lettered("Only 123 letters + count!",true)

Only letters count

Access to tables can happen by number or by string, although there are some limitations
when it gets too confusing. Take for instance the number 8 and string "8": if we would
interpret the string as number we could never access the entry for the character eight. How-
ever, using more verbose hexadecimal strings works okay. The remappers are also available
as functions:

characters.tonumber("a")

97

characters.fromnumber(100)

d

characters.fromnumber(0x0100)

Ā

characters.fromnumber("0x0100")

Ā

characters.fromnumber("U+0100")

Ā

In addition to the already mentioned category information you can also use a more direct
table approach:

characters.categories["ä"]

ll

characters.categories[100]

ll

In a similar fashion you can test if a given character is in a specific category. This can save a
lot of tests.

88 The Lua interface code

preliminary, uncorrected version – November 26, 2010

characters.is_character[characters.categories[67]]

true

characters.is_character[67]

true

characters.is_character[characters.data[67].category]

true

characters.is_letter[characters.data[67].category]

true

characters.is_command[characters.data[67].category]

nil

Another virtual table is the one that provides access to special information, for instance about
how a composed character is made up of components.

characters.specialchars["ä"]

a

characters.specialchars[100]

d

The outcome is often similar to output that uses the shapecode information.

9.3 Fonts
There is a lot of code that deals with fonts but most is considered to be a black box. When a
font is defined, its data is collected and turned into a form that TEX likes. We keep most of
that data available at the Lua end so that we can later use it when needed.

A font instance is identified by its id, which is a number where zero is reserved for the so
called nullfont. The current font id can be requested by the following function.

fonts.currentid()

47

The fonts.current() call returns the table with data related to the current id. You can
access the data related to any id as follows:

local tfmdata = fonts.identifiers[number]

The Lua interface code 89

preliminary, uncorrected version – November 26, 2010

Not all entries in the table make sense for the user as some are just meant to drive the font
initialization at the TEX end or the backend. The next table lists the most important ones.
Some of the tables are just shortcuts to en entry in one of the shared subtables.

ascender number the height of a line conforming the font
descender number the depth of a line conforming the font
italicangle number the angle of the italic shapes (if present)
designsize number the design size of the font (if known)
size number the size in scaled points if the font instance
factor number the multiplication factor for unscaled dimensions
hfactor number the horizontal multiplication factor
vfactor number the vertical multiplication factor
extend number the horizontal scaling to be used by the backend
slant number the slanting to be applied by the backend
characters table the scaled character (glyph) information (tfm)
descriptions table the original unscaled glyph information (otf, afm, tfm)
indices table the mapping from unicode slot to glyph index
unicodes table the mapoing from glyph names to unicode
marks table a hash table with glyphs that are marks as entry
parameters table the font parameters as TEX likes them
mathconstants table the OpenType math parameters
mathparameters table a reference to the MathConstants table
shared table a table with information shared between instances
unique table a table with information unique for this instance
unscaled table the unscaled (intermediate) table
goodies table the ConTEXt specific extra font information
fonts table the table with references to other fonts
cidinfo table a table with special information for the backend
filename string the full path of the loaded font
fontname string the font name as specified in the font (limited in size)
fullname string the complete font name as specified in the font
name string the (short) name of the font
psname string the (unique) name of the font as used by the backend
hash string the hash that makes this instance unique
id number the id (number) that TEX will use for this instance
type string an idicator if the font is virtual or real
format string a qualification for this font, e.g. opentype
mode string the ConTEXt processing mode, node or base

The parameters table contains variables that are used by TEX itself. You can use numbers
as index and these are equivalent to the so called \fontdimen variables. More convenient is
is to access by name:

slant the slant per point (seldom used)
space the interword space

90 The Lua interface code

preliminary, uncorrected version – November 26, 2010

spacestretch the interword stretch
spaceshrink the interword shrink
xheight the x-height (not per se the heigth of an x)
quad the so called em-width (often the width of an emdash)
extraspace additional space added in specific situations

The math parameters are rather special and explained in the LuaTEX manual. Quite certainly
you never have to touch these parameters at the Lua end.

En entry in the characters table describes a character if we have entries within the Unicode
range. There can be entries in the private area but these are normally variants of a shape or
special math glyphs.

name the name of the character
index the index in the raw font table
height the scaled height of the character
depth the scaled depth of the character
width the scaled height of the character
tounicode a utf-16 string representing the conversion back to unicode
expansion_factor a multiplication factor for (horizontal) font expansion
left_protruding a multiplication factor for left side protrusion
right_protruding a multiplication factor for right side protrusion
italic the italic correction
next a pointer to the next character in a math size chain
vert_variants a pointer to vertical variants conforming OpenType math
horiz_variants a pointer to horizontal variants conforming OpenType math
top_accent information with regards to math top accents
mathkern a table describing stepwise math kerning (following the shape)
kerns a table with intercharacter kerning dimensions
ligatures a (nested) table describing ligatures that start with this character
commands a table with commands that drive the backend code for a virtual shape

Not all entries are present for each character. Also, in so called node mode, the ligatures
and kerns tables are empty because in that case they are dealt with at the Lua end and not
by TEX.

Say that you run into a glyph node and want to access the data related to that glyph. Given
that variable n points to the node, the most verbose way of doing that is:

local g = fonts.identifiers[n.id].characters[n.char]

Given the speed of LuaTEX this is quite fast. Another method is the following:

local g = fonts.characters[n.id][n.char]

For some applications you might want fast access to critical parameters, like:

local quad = fonts.quads [n.id][n.char]
local xheight = fonts.xheights[n.id][n.char]

The Lua interface code 91

preliminary, uncorrected version – November 26, 2010

but that only makes sense when you don't access more than one such variable at the same
time.

Among the shared tables is the feature specification:

fonts.current().shared.features

{ ["analyze"]=true, ["features"]=true, ["kern"]=true, ["liga"]=true,
["number"]=1, ["tlig"]=true, ["trep"]=true, }

As features are a prominent property of OpenType fonts, there are a few datatables that can
be used to get their meaning.

fonts.otf.tables.features['liga']

Standard Ligatures

fonts.otf.tables.languages['nld']

Dutch

fonts.otf.tables.scripts['arab']

Arabic

There is a rather extensive font database built in but discussing its interface does not make
much sense. Most usage happens automatically when you use the name: and spec: meth-
ods of defining fonts and the mtx-fonts script is built on top of it.

table.sortedkeys(fonts.names.data)

{ "cache_uuid", "cache_version", "datastate", "fallbacks", "families",
"files", "mappings", "sorted_fallbacks", "sorted_families", "sorted_mappings",
"specifications", "statistics", "version", }

You can load the database (if it's not yet loaded) with:

names.load(reload,verbose)

When the first argument is true, the database will be rebuild. The second arguments controls
verbosity.

Defining a font normally happens at the TEX end but you can also do it in Lua.

local id, fontdata = fonts.definers.define {
lookup = "file", -- use the filename (file spec name)
name = "pagella-regular", -- in this case the filename
size = 10*65535, -- scaled points
global = false, -- define the font globally
cs = "MyFont", -- associate the name \MyFont
method = "featureset", -- featureset or virtual (* or @)

92 The Lua interface code

preliminary, uncorrected version – November 26, 2010

sub = nil, -- no subfont specifier
detail = "whatever", -- the featureset (or whatever method applies)

}

In this case the detail variable defines what featureset has to be applied. You can define
such sets at the Lua end too:

fonts.definers.specifiers.presetcontext (
"whatever",
"default",
{

mode = "node",
dlig = "yes",

}
)

The first argument is the name of the featureset. The second argument can be an empty
string or a reference to an existing featureset that will be taken as starting point. The final
argument is the featureset. This can be a table or a string with a comma separated list of key/
value pairs.

9.4 Nodes
Nodes are the building blocks that make a document reality. Nodes are linked into lists
and at various moments in the typesetting process you can manipulate them. Deep down
in ConTEXt we use quite some Lua magic to manipulate lists of nodes. Therefore it is no
surprise that we have some tracing available. Take the followingbox.

This box contains characters and glue between the words. The box is already constructed.
There can also be kerns between characters, but of course only if the font provides such a
feature. Let's inspect this box:

nodes.toutf(tex.box[0])

It's in all those nodes.

nodes.toutf(tex.box[0].list)

It's in all those nodes.

This tracer returns the text and spacing and recurses into nested lists. The next tracer does
not do this and marks non glyph nodes as [-]:

nodes.listtoutf(tex.box[0])

[-]

nodes.listtoutf(tex.box[0].list)

It'[-]s[-]in[-][-][-]t[-]hose[-]nodes.

The Lua interface code 93

preliminary, uncorrected version – November 26, 2010

A more verbose tracer is the next one. It does show a bit more detailed information about
the glyphs nodes.

nodes.tosequence(tex.box[0])

hlist

nodes.tosequence(tex.box[0].list)

U+0049:I U+0074:t U+0027:' kern U+0073:s glue U+0069:i U+006E:n glue hlist
glue U+0074:t kern U+0068:h U+006F:o U+0073:s U+0065:e glue U+006E:n U+006F:o
U+0064:d U+0065:e U+0073:s U+002E:.

The fourth tracer does not show that detail and collapses sequences of similar node types.

nodes.idstostring(tex.box[0])

[hlist]

nodes.idstostring(tex.box[0].list)

[3*glyph] [kern] [glyph] [glue] [2*glyph] [glue] [hlist] [glue] [glyph] [kern]
[4*glyph] [glue] [6*glyph]

The number of nodes in a list is identified with the count function. Nested nodes are counted
too.

nodes.count(tex.box[0])

28

nodes.count(tex.box[0].list)

27

There are functions to check node types and node id's:

local str = node.type(1)
local num = node.id("vlist")

These are basic LuaTEX functions. In addition to those we also provide a few mapping tables.
There are two tables that map node id's to strings and backwards:

nodes.nodecodes regular nodes, some fo them are sort of private to the engine
nodes.noadcodes math nodes that later on are converted into regular nodes

Nodes can have subtypes. Again we have tables that map the subtype numbers onto mean-
ingfull names and reverse.

nodes.listcodes subtypes of hlist and vlist nodes
nodes.kerncodes subtypes of kern nodes
nodes.gluecodes subtypes of glue nodes (skips)

94 The Lua interface code

preliminary, uncorrected version – November 26, 2010

nodes.glyphcodes subtypes of glyph nodes, the subtype can change
nodes.mathcodes math specific subtypes
nodes.fillcodes these are not really subtypes but indicate the strength of the filler
nodes.whatsitcodes subtypes of a rather large group of extension nodes

Some of the names of types and subtypes have underscores but you can omit them when you
use these tables. You can use tables like this as follows:

local glyph_code = nodes.nodecodes.glyph
local kern_code = nodes.nodecodes.kern
local glue_code = nodes.nodecodes.glue

for n in nodes.traverse(list) do
local id == n.id
if id == glyph_code then

...
elseif id == kern_code then

...
elseif id == glue_code then

...
else

...
end

end

You only need to use such temporary variables in time critical code. In spite of what you
might think, lists are not that long and given the speed of Lua (and successive optimizations
in LuaTEX) looping over a paragraphs is rather fast.

Nodes are created using node.new. If you study the ConTEXt code you will notice that there
are quite some functions in the nodes.pool namespace, like:

local g = nodes.pool.glyph(fnt,chr)

Of course you need to make sure that the font id is valid and that the referred glyph in in the
font. You can use the allocators but don't mess with the code in the pool namespace as this
might interfere with its usage all over ConTEXt.

The nodes namespace provides a couple of helpers and some of them are similar to ones
provided in the node namespace. This has practical as well as historic reasons. For instance
some were prototypes functions that were later built in.

local head, current = nodes.before (head, current, new)
local head, current = nodes.after (head, current, new)
local head, current = nodes.delete (head, current)
local head, current = nodes.replace(head, current, new)
local head, current, old = nodes.remove (head, current)

Another category deals with attributes:

The Lua interface code 95

preliminary, uncorrected version – November 26, 2010

nodes.setattribute (head, attribute, value)
nodes.unsetattribute (head, attribute)
nodes.setunsetattribute (head, attribute, value)
nodes.setattributes (head, attribute, value)
nodes.unsetattributes (head, attribute)
nodes.setunsetattributes(head, attribute, value)
nodes.hasattribute (head, attribute, value)

9.5 Resolvers
All io is handled by functions in the resolvers namespace. Most of the code that you find
in the data-*.lua files is of litle relevance for users, especially at the Lua end, so we won't
discuss it here in great detail.

The resolver code is modelled after the kpse library that itself implements the TEX Directory
Structure in combination with a configuration file. However, we go a bit beyond this struc-
ture, for instance in integrating support for other resources that file systems. We also have
our own configuration file. But important is that we still support a similar logic too so that
regular configurations are dealt with.

During a run LuaTEX needs files of a different kind: source files, font files, images, etc. In
practice you will probably only deal with source files. The most fundamental function is
findfile. The first argument is the filename to be found. A second optional argument
indicates the filetype.

The following table relates so called formats to suffixes and variables in the configuration
file.

variable format suffix
AFMFONTS afm afm

adobe font metric
adobe font metrics
bib bib
bst bst

FONTCIDMAPS cid cid cidmap
cid map
cid maps
cid file
cid files

FONTFEATURES fea fea
font feature
font features
font feature file
font feature files

TEXFORMATS fmt fmt
format
tex format

96 The Lua interface code

preliminary, uncorrected version – November 26, 2010

FONTCONFIG_PATH fontconfig
fontconfig file
fontconfig files

ICCPROFILES icc icc
icc profile
icc profiles

CLUAINPUTS lib dll
LUAINPUTS lua lua luc tma tmc
MPMEMS mem mem

metapost format
MPINPUTS mp mp
OFMFONTS ofm ofm tfm

omega font metric
omega font metrics

OPENTYPEFONTS otf otf
opentype
opentype font
opentype fonts

OVFFONTS ovf ovf vf
omega virtual font
omega virtual fonts

T1FONTS pfb pfb pfa
type1
type 1
type1 font
type 1 font
type1 fonts
type 1 fonts

TEXINPUTS tex tex mkiv mkiv mkii
TEXMFSCRIPTS texmfscript rb pl py

texmfscripts
script
scripts

TFMFONTS tfm tfm
tex font metric
tex font metrics

TTFONTS ttf ttf ttc dfont
truetype
truetype font
truetype fonts
truetype collection
truetype collections
truetype dictionary
truetype dictionaries

The Lua interface code 97

preliminary, uncorrected version – November 26, 2010

VFFONTS vf vf
virtual font
virtual fonts

There are a couple of more formats but these are not that relevant in the perspective of
ConTEXt.

When a lookup takes place, spaces are ignored and formats are normalized to lowercase.

file.strip(resolvers.findfile("context.tex"),"tex/")

c:/data/develop/context/sources/context.tex

file.strip(resolvers.findfile("context.mkiv"),"tex/")

c:/data/develop/context/sources/context.mkiv

file.strip(resolvers.findfile("context"),"tex/")

c:/data/develop/context/sources/context.tex

file.strip(resolvers.findfile("data-res.lua"),"tex/")

c:/data/develop/context/sources/data-res.lua

file.strip(resolvers.findfile("lmsans10-bold"),"tex/")

file.strip(resolvers.findfile("lmsans10-bold.otf"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","otf"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","opentype"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","opentypefonts"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","opentype fonts"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

The plural variant of this function returns one or more matches.

98 The Lua interface code

preliminary, uncorrected version – November 26, 2010

resolvers.findfiles("texmfcnf.lua","cnf")

{ "c:/data/develop/tex-context/tex/texmf-local/web2c/texmfcnf.lua", }

resolvers.findfiles("context.tex","")

{ "c:/data/develop/context/sources/context.tex", "c:/data/develop/tex-context/tex/texmf-context/tex/context/base/context.tex",
}

9.6 Mathematics (math)
todo

9.7 Graphics (grph)
todo

9.8 Languages (lang)
todo

9.9 MetaPost (mlib)
todo

9.10 LuaTEX (luat)
todo

9.11 Tracing (trac)
todo

Callbacks 99

preliminary, uncorrected version – November 26, 2010

10 Callbacks

10.1 Introduction
The LuaTEX engine provides the usual basic TEX functionality plus a bit more. It is a delib-
erate choice not to extend the core engine too much. Instead all relevant processes can be
overloaded by new functionality written in Lua. In ConTEXt callbacks are wrapped in a pro-
tective layer: on the one hand there is extra functionality (usually interfaced through macros)
and on the other hand users can pop in their own handlers using hooks. Of course a plugged
in function has to do the right thing and not mess up the data structures. In this chapter the
layer on top of callbacks is described.

10.2 Actions
Nearly all callbacks in LuaTEX are used in ConTEXt. In the following list the callbacks tagged
with enabled are used and frozen, the ones tagged disabled are blocked and never used,
while the ones tagged undefined are yet unused.

buildpage_filter enabled vertical spacing etc (mvl)
char_exists undefined
define_font enabled definition of fonts (tfmtable preparation)
find_data_file enabled find file using resolver
find_enc_file enabled find file using resolver
find_font_file enabled find file using resolver
find_format_file enabled find file using resolver
find_image_file enabled find file using resolver
find_map_file enabled find file using resolver
find_opentype_file enabled find file using resolver
find_output_file enabled find file using resolver
find_pk_file enabled find file using resolver
find_read_file enabled find file using resolver
find_sfd_file enabled find file using resolver
find_truetype_file enabled find file using resolver
find_type1_file enabled find file using resolver
find_vf_file enabled find file using resolver
find_write_file enabled find file using resolver
finish_pdffile enabled
hpack_filter enabled all kind of horizontal manipulations
hyphenate disabled normal hyphenation routine, called elsewhere
kerning disabled normal kerning routine, called elsewhere
ligaturing disabled normal ligaturing routine, called elsewhere
linebreak_filter enabled breaking paragraps into lines
mlist_to_hlist enabled preprocessing math list
open_read_file enabled open file for reading

100 Callbacks

preliminary, uncorrected version – November 26, 2010

post_linebreak_filter enabled all kind of horizontal manipulations (after par
break)

pre_dump enabled lua related finalizers called before we dump the
format

pre_linebreak_filter enabled all kind of horizontal manipulations (before par
break)

pre_output_filter undefined
process_input_buffer disabled actions performed when reading data
process_output_buffer disabled actions performed when writing data
read_data_file enabled read file at once
read_enc_file enabled read file at once
read_font_file enabled read file at once
read_map_file enabled read file at once
read_opentype_file undefined read file at once
read_pk_file enabled read file at once
read_sfd_file enabled read file at once
read_truetype_file undefined read file at once
read_type1_file undefined read file at once
read_vf_file enabled read file at once
show_error_hook enabled
start_page_number enabled actions performed at the beginning of a shipout
start_run enabled actions performed at the beginning of a run
stop_page_number enabled actions performed at the end of a shipout
stop_run enabled actions performed at the end of a run
token_filter undefined
vpack_filter enabled vertical spacing etc

Eventually all callbacks will be used so don't rely on undefined callbacks not being protected.
Some callbacks are only set when certain functionality is enabled.

It may sound somewhat harsh but if users kick in their own code, we cannot guarantee
ConTEXt's behaviour any more and support becomes a pain. If you really need to use a call-
back yourself, you should use one of the hooks and make sure that you return the right
values.

All callbacks related to file handling, font definition and housekeeping are frozen and cannot
be overloaded. A reason for this are that we need some kind of protection against misuse.
Another reason is that we operate in a well defined environment, the so called TEX directory
structure, and we don't want to mess with that. And of course, the overloading permits
ConTEXt to provide extensions beyond regular engine functionality.

So as a fact we only open up some of the node list related callbacks and these are grouped as
follows:

category callback usage
processors pre_linebreak_filter called just before the paragraph is broken

into lines

Callbacks 101

preliminary, uncorrected version – November 26, 2010

hpack_filter called just before a horizontal box is con-
structed

finalizers post_linebreak_filter called just after the paragraph has been bro-
ken into lines

shipouts no callback yet applied to the box (or xform) that is to be
shipped out

mvlbuilders buildpage_filter called after some material has been added to
the main vertical list

vboxbuilders vpack_filter called when some material is added to a ver-
tical box

math mlist_to_hlist called just after the math list is created, before
it is turned into an horizontal list

Each category has several subcategories but for users only two make sense: before and
after. Say that you want to hook some tracing into the mvlbuilder. This is how it's done:

function third.mymodule.myfunction(where)
nodes.show_simple_list(tex.lists.contrib_head)

end

nodes.tasks.appendaction("processors", "before", "third.mymodule.myfunction")

As you can see, in this case the function gets no head passed (at least not currently). This
example also assumes that you know how to access the right items. The arguments and
return values are given below.3

category arguments return value
processors head, ... head, done
finalizers head, ... head, done
shipouts head head, done
mvlbuilders done
vboxbuilders head, ... head, done
parbuilders head, ... head, done
pagebuilders head, ... head, done
math head, ... head, done

10.3 Tasks
In the previous section we already saw that the actions are in fact tasks and that we can
append (and therefore also prepend) to a list of tasks. The before and after task lists are
valid hooks for users contrary to the other tasks that can make up an action. However, the
task builder is generic enough for users to be used for individual tasks that are plugged into
the user hooks.

3 This interface might change a bit in future versions of ConTEXt. Therefore we will not discuss the few more
optional arguments that are possible.

102 Callbacks

preliminary, uncorrected version – November 26, 2010

Of course at some point, too many nested tasks bring a performance penalty with them. At
the end of a run MkIV reports some statistics and timings and these can give you an idea
how much time is spent in Lua.

The following tables list all the registered tasks for the processors actions:

category function
before unset
normalizers fonts.collections.process

fonts.checkers.missing

characters typesetters.directions.handler
typesetters.cases.handler
typesetters.breakpoints.handler
scripts.preprocess

words builders.kernel.hyphenation
languages.words.check

fonts builders.paragraphs.solutions.splitters.split
nodes.handlers.characters
nodes.injections.handler
nodes.handlers.protectglyphs
builders.kernel.ligaturing
builders.kernel.kerning
nodes.handlers.stripping

lists typesetters.spacings.handler
typesetters.kerns.handler
typesetters.digits.handler

after unset

Some of these do have subtasks and some of these even more, so you can imagine that quite
some action is going on there.

The finalizer tasks are:

category function
before unset
normalizers unset
fonts builders.paragraphs.solutions.splitters.optimize

lists nodes.handlers.graphicvadjust

after unset

Shipouts concern:

category function
before unset

Callbacks 103

preliminary, uncorrected version – November 26, 2010

normalizers nodes.handlers.cleanuppage
nodes.references.handler
nodes.destinations.handler
nodes.rules.handler
nodes.shifts.handler
structures.tags.handler
nodes.handlers.accessibility
nodes.handlers.backgrounds

finishers attributes.colors.handler
attributes.transparencies.handler
attributes.colorintents.handler
attributes.negatives.handler
attributes.effects.handler
attributes.viewerlayers.handler

after unset

There are not that many mvlbuilder tasks currently:

category function
before unset
normalizers streams.collect

nodes.handlers.migrate
builders.vspacing.pagehandler

after unset

The vboxbuilder perform similar tasks:

category function
before unset
normalizers builders.vspacing.vboxhandler

after unset

In the future we expect to have more parbuilder tasks. Here again there are subtasks that
depend on the current typesetting environment, so this is the right spot for language specific
treatments.

The following actions are applied just before the list is passed on the the output routine. The
return value is a vlist.

Both the parbuilders and pagebuilder tasks are unofficial and not yet meant for users.

Finally, we have tasks related to the math list:

category function
before unset

104 Callbacks

preliminary, uncorrected version – November 26, 2010

normalizers noads.handlers.relocate
noads.handlers.collapse
noads.handlers.resize
noads.handlers.respace
noads.handlers.check
noads.handlers.tags

builders builders.kernel.mlist_to_hlist

after unset

As MkIV is developed in sync with LuaTEX and code changes from experimental to more
final and reverse, you should not be too surprised if the registered function names change.

You can create your own task list with:

nodes.tasks.new("mytasks",{ "one", "two" })

After that you can register functions. You can append as well as prepend them either or not
at a specific position.

nodes.tasks.appendaction ("mytask","one","bla.alpha")
nodes.tasks.appendaction ("mytask","one","bla.beta")

nodes.tasks.prependaction("mytask","two","bla.gamma")
nodes.tasks.prependaction("mytask","two","bla.delta")

nodes.tasks.appendaction ("mytask","one","bla.whatever","bla.alpha")

Functions can also be removed:

nodes.tasks.removeaction("mytask","one","bla.whatever")

As removal is somewhat drastic, it is also possible to enable and disable functions. From
the fact that with these two functions you don't specify a category (like one or two) you can
conclude that the function names need to be unique within the task list or else all with the
same name within this task will be disabled.

nodes.tasks.enableaction ("mytask","bla.whatever")
nodes.tasks.disableaction("mytask","bla.whatever")

The same can be done with a complete category:

nodes.tasks.enablegroup ("mytask","one")
nodes.tasks.disablegroup("mytask","one")

There is one function left:

nodes.tasks.actions("mytask",2)

Callbacks 105

preliminary, uncorrected version – November 26, 2010

This function returns a function that when called will perform the tasks. In this case the
function takes two extra arguments in addition to head.4

Tasks themselves are implemented on top of sequences but we won't discuss them here.

10.4 Paragraph and page builders
Building paragraphs and pages is implemented differently and has no user hooks. There is
a mechanism for plugins but the interface is quite experimental.

10.5 Some examples
todo

4 Specifying this number permits for some optimization but is not really needed

106

preliminary, uncorrected version – November 26, 2010

Backend code 107

preliminary, uncorrected version – November 26, 2010

11 Backend code

11.1 Introduction
In ConTEXt we've always separated the backend code in so called driver files. This means that
in the code related to typesetting only calls to the api take place, and no backend specific code
is to be used. Currently a pdf backend is supported as well as an xml export.5

Some ConTEXt users like to add their own pdf specific code to their styles or modules. How-
ever, such extensions can interfere with existing code, especially when resources are involved.
Therefore the construction of pdf data structures and resources is rather controlled and has
to be done via the official helper macros.

11.2 Structure
A pdf file is a tree of indirect objects. Each object has a number and the file contains a table (or
multiple tables) that relates these numbers to positions in a file (or position in a compressed
object stream). That way a file can be viewed without reading all data: a viewer only loads
what is needed.

1 0 obj <<
/Name (test) /Address 2 0 R

>>
2 0 obj [

(Main Street) (24) (postal code) (MyPlace)
]

For the sake of the discussion we consider strings like (test) also to be objects. In the next
table we list what we can encounter in a pdf file. There can be indirect objects in which case
a reference is used (2 0 R) and direct ones.

It all starts in the document's root object. From there we access the page tree and resources.
Each page carries its own resource information which makes random access easier. A page
has a page stream and there we find the to be rendered content as a mixture of (Unicode)
strings and special drawing and rendering operators. Here we will not discuss them as they
are mostly generated by the engine itself or dedicated subsystems like the MetaPost converter.
There we use literal or \latelua whatsits to inject code into the current stream.

11.3 Data types
There are several datatypes in pdf and we support all of them one way or the other.

5 This chapter is derived from an article on these matters. You can find nore information in hybrid.pdf.

108 Backend code

preliminary, uncorrected version – November 26, 2010

type form meaning
constant /... A symbol (prescribed string).
string (...) A sequence of characters in pdfdoc encoding
unicode <...> A sequence of characters in utf16 encoding
number 3.1415 A number constant.
boolean true/false A boolean constant.
reference N 0 R A reference to an object
dictionary << ... >> A collection of key value pairs where the value itself is an (indi-

rect) object.
array [...] A list of objects or references to objects.
stream A sequence of bytes either or not packaged with a dictionary that

contains descriptive data.
xform A special kind of object containing an reusable blob of data, for

example an image.

While writing additional backend code, we mostly create dictionaries.

<< /Name (test) /Address 2 0 R >>

In this case the indirect object can look like:

[(Main Street) (24) (postal code) (MyPlace)]

The LuaTEX manual mentions primitives like\pdfobj, \pdfannot, \pdfcatalog, etc. How-
ever, in MkIV no such primitives are used. You can still use many of them but those that push
data into document or page related resources are overloaded to do nothing at all.

In the Lua backend code you will find function calls like:

local d = lpdf.dictionary {
Name = lpdf.string("test"),
Address = lpdf.array {

"Main Street", "24", "postal code", "MyPlace",
}

}

Equaly valid is:

local d = lpdf.dictionary()
d.Name = "test"

Eventually the object will end up in the file using calls like:

local r = lpdf.immediateobject(tostring(d))

or using the wrapper (which permits tracing):

local r = lpdf.flushobject(d)

Backend code 109

preliminary, uncorrected version – November 26, 2010

The object content will be serialized according to the formal specification so the proper <<
>> etc. are added. If you want the content instead you can use a function call:

local dict = d()

An example of using references is:

local a = lpdf.array {
"Main Street", "24", "postal code", "MyPlace",

}
local d = lpdf.dictionary {

Name = lpdf.string("test"),
Address = lpdf.reference(a),

}
local r = lpdf.flushobject(d)

We have the following creators. Their arguments are optional.

function optional parameter
lpdf.null
lpdf.number number
lpdf.constant string
lpdf.string string
lpdf.unicode string
lpdf.boolean boolean
lpdf.array indexed table of objects
lpdf.dictionary hash with key/values
lpdf.reference string
lpdf.verbose indexed table of strings

tostring(lpdf.null())

null

tostring(lpdf.number(123))

123

tostring(lpdf.constant("whatever"))

/whatever

tostring(lpdf.string("just a string"))

(just a string)

tostring(lpdf.unicode("just a string"))

<feff006a0075007300740020006100200073007400720069006e0067>

110 Backend code

preliminary, uncorrected version – November 26, 2010

tostring(lpdf.boolean(true))

true

tostring(lpdf.array { 1, lpdf.constant("c"), true, "str" })

[1 /c true (str)]

tostring(lpdf.dictionary { a=1, b=lpdf.constant("c"), d=true, e="str" })

<< /a 1 /d true /e (str) /b /c >>

tostring(lpdf.reference(123))

123 0 R

tostring(lpdf.verbose("whatever"))

whatever

11.4 Managing objects
Flushing objects is done with:

lpdf.flushobject(obj)

Reserving object is or course possible and done with:

local r = lpdf.reserveobject()

Such an object is flushed with:

lpdf.flushobject(r,obj)

We also support named objects:

lpdf.reserveobject("myobject")

lpdf.flushobject("myobject",obj)

A delayed object is created with:

local ref = pdf.delayedobject(data)

The data will be flushed later using the object number that is returned (ref). When you
expect that many object with the same content are used, you can use:

local obj = lpdf.shareobject(data)
local ref = lpdf.shareobjectreference(data)

This one flushes the object and returns the object number. Already defined objects are reused.
In addition to this code driven optimization, some other optimization and reuse takes place

Backend code 111

preliminary, uncorrected version – November 26, 2010

but all that happens without user intervention. Only use this when it's really needed as it
might consume more memory and needs more processing time.

11.5 Resources
While LuaTEX itself will embed all resources related to regular typesetting, MkIV has to take
care of embedding those related to special tricks, like annotations, spot colors, layers, shades,
transparencies, metadata, etc. Because third party modules (like tikz) also can add resources
we provide some macros that makes sure that no interference takes place:

\pdfbackendsetcatalog {key}{string}
\pdfbackendsetinfo {key}{string}
\pdfbackendsetname {key}{string}

\pdfbackendsetpageattribute {key}{string}
\pdfbackendsetpagesattribute{key}{string}
\pdfbackendsetpageresource {key}{string}

\pdfbackendsetextgstate {key}{pdfdata}
\pdfbackendsetcolorspace {key}{pdfdata}
\pdfbackendsetpattern {key}{pdfdata}
\pdfbackendsetshade {key}{pdfdata}

One is free to use the Lua interface instead, as there one has more possibilities but when code
is shared with other macro packages the macro interface makes more sense. The names of
the Lua functions are similar, like:

lpdf.addtoinfo(key,anything_valid_pdf)

Currently we expose a bit more of the backend code than we like and future versions will
have a more restricted access. The following function will stay public:

lpdf.addtopageresources (key,value)
lpdf.addtopageattributes (key,value)
lpdf.addtopagesattributes(key,value)

lpdf.adddocumentextgstate(key,value)
lpdf.adddocumentcolorspac(key,value)
lpdf.adddocumentpattern (key,value)
lpdf.adddocumentshade (key,value)

lpdf.addtocatalog (key,value)
lpdf.addtoinfo (key,value)
lpdf.addtonames (key,value)

112 Backend code

preliminary, uncorrected version – November 26, 2010

11.6 Annotations
You can use the Lua functions that relate to annotations etc. but normally you will use the
regular ConTEXt user interface. You can look into some of the lpdf-* modules to see how
special annotations can be dealt with.

11.7 Tracing
There are several tracing options built in and some more will be added in due time:

\enabletrackers
[backend.finalizers,
backend.resources,
backend.objects,
backend.detail]

As with all trackers you can also pass them on the command line, for example:

context --trackers=backend.* yourfile

The reference related backend mechanisms have their own trackers. When you write code
that generates pdf, it also helps to look in the pdf file so see if things are done right. In that
case you need to disable compression:

\nopdfcompression

XML 113

preliminary, uncorrected version – November 26, 2010

12 XML

12.1 Introduction
Being a popular input format, xml deserves some attention, especially because ConTEXt has
a parser built-in. The parser is written in Lua and therefore interfacing is quite convenient.
Of course you can skip this chapter if you don't run into xml at all or when the regular TEX
interface to xml is enough for your jobs.

114

preliminary, uncorrected version – November 26, 2010

Summary 115

preliminary, uncorrected version – November 26, 2010

13 Summary

context("...")

The string is flushed directly.

...

context("format",...)

The first string is a format specification according that is passed to the Lua function format
in the string namespace. Following arguments are passed too.

format("format",...)

context(123,...)

The numbers (and following numbers or strings) are flushed without any formatting.

123... (concatenated)

context(true)

An explicit endlinechar is inserted.

^^M

context(false,...)

Strings and numbers are flushed surrounded by curly braces, an indexed table is flushed as
option list, and a hashed table is flushed as parameter set.

multiple {...} or [...] etc

context(node)

The node(list) is injected at the spot. Keep in mind that you need to do the proper memory
management yourself.

context.command(value,...)

The value (string or number) is flushed as a curly braced (regular) argument.

\command {value}...

116 Summary

preliminary, uncorrected version – November 26, 2010

context.command({ value },...)

The table is flushed as value set. This can be an identifier, a list of options, or a directive.

\command [value]...

context.command({ key = value },...)

The table is flushed as key/value set.

\command [key={value}]...

context.command(true)

An explicit endlinechar is inserted.

\command ^^M

context.command(node)

The node(list) is injected at the spot. Keep in mind that you need to do the proper memory
management yourself.

\command {node(list)}

context.command(false,value)

The value is flushed without encapsulating tokens.

\command value

context.command({ value }, { key = value }, value, false, value)

The arguments are flushed accordingly their nature and the order can be any.

\command [value][key={value}]{value}value

context.direct(...)

The arguments are interpreted the same as if direct was a command, but no \direct is
injected in front.

context.delayed(...)

The arguments are interpreted the same as in a context call, but instead of a direct flush,
the arguments will be flushed in a next cycle.

Summary 117

preliminary, uncorrected version – November 26, 2010

context.delayed.command(...)

The arguments are interpreted the same as in a command call, but instead of a direct flush,
the command and arguments will be flushed in a next cycle.

context.nested.command

This command returns the command, including given arguments as a string. No flushing
takes place.

context.nested

This command returns the arguments as a string and treats them the same as a regular
context call.

context.metafun.start(...)

This starts a MetaFun (or MetaPost) graphic.

context.metafun()

This finishes and flushes a MetaFun (or MetaPost) graphic.

context.metafun.stop(...)

The argument is appended to the current graphic data.

context.metafun.stop("format",...)

The argument is appended to the current graphic data but the string formatter is used on
following arguments.

118

preliminary, uncorrected version – November 26, 2010

Special commands 119

preliminary, uncorrected version – November 26, 2010

14 Special commands

There are a few functions in the context namespace that are no macros at the TEX end.

context.runfile("somefile.cld")

Another useful command is:

context.settracing(true)

There are a few tracing options that you can set at the TEX end:

\enabletrackers[context.files]
\enabletrackers[context.trace]

A few macros have special functions at the Lua end. One of them is \char. The function
makes sure that the characters ends up right. The same is true for \chardef. So, you don't
need to mess around with \relax or trailing spaces as you would do at the TEX end in order
to tell the scanner to stop looking ahead.

context.char(123)

Other examples of macros that have optimized functions are \par, \bgroup and \egroup.

120

preliminary, uncorrected version – November 26, 2010

Index 121

preliminary, uncorrected version – November 26, 2010

Index

needs checking, incomplete

b
booleans 7

c
callbacks 99
catcodes 20
comment 14
constants 27

d
delaying 24
direct output 18

e
expressions 12

f
functions 7, 23

l
lines 17
loops 10
Lua 7

m
modes 27

n
namespaces 12

nesting 24
nodelists 99
nodes 29
numbers 7

p
prerolls 25
processing 15

s
spaces 17
strings 7
systemmodes 27

t
tables 7
tasks 101
tokens 28
tracing 119
trial typesetting 25

u
user interface 27

v
variables 7
verbatim 45
verbose 18

122

preliminary, uncorrected version – November 26, 2010

